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Driven lattice gases with quenched disorder: Exact results and different macroscopic regimes
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We study the effect of quenched spatial disorder on the current-carrying steady states of driven stochastic
systems of particles interacting through hard-core exclusion. Two sorts of models are studied: disordered
drop-push processes and their generalizations, and the disordered asymmetric simple exclusion process.
Quenched disorder enters through spatially random microscopic transition probabilities and the drive is mod-
eled by asymmetry in transition probabilities between sites. Exact steady-state measures are obtained for the
drop-push and the generalized drop-push dynamias dimensions for arbitrary disorder. This allows us to
compute closed form expressions for the steady-state current and site-dependent densities. The steady state of
the asymmetric exclusion process with disordered bond strengths is studied in one dimension by numerical
simulation and by a mean-field approximation that allows for density variations from site to site. In the totally
asymmetric case, we present strong numerical evidence that the current is invariant under reflection. We show
that disorder can induce phase separation into macroscopic regions of different densities. We propose approxi-
mations, supported by direct numerical simulations, to describe these phenomena and the phase diagram of the
model in the current-density plane in terms of macroscopic parameters of the model. We also study the effect
of making the direction of easy flow in each bond a random variable and find that the current decreases with
system size in this case. We conclude that there are three distinct regimes in disordered driven diffusive
systems in one dimension:rmmogeneousegime in which the state of the system is characterized by a single
macroscopic density and a nonzero currensegregated-densitsegime, where the state of the system is
characterized by two distinct phase-separated values of density and a nonzero cuvaishing-current
regime, where the state of the system is characterized by two distinct values of the density and the current
decreases as the system size increases and vanishes in the thermodynamic limit. Using a mapping from lattice
gases to interfaces, these regimes translate into distinct regimes of interface growth in the presence of columnar
disorder.[S1063-651X98)06708-1

PACS numbg(s): 05.60:+w, 47.55.Mh, 64.60-i, 05.50+q

[. INTRODUCTION theoretic techniques if8], but the connection of this study
with particle-conserving disordered lattice gas models is not

It is known that quenched disorder can strongly affect theclear.
large-scale, long-time behavior of nonequilibrium driven In this paper we study disordered lattice gas models with
systems with interacting constituents. The interplay of disora view towards identifying different sorts of generic behavior
der, interactions, and drive opens up the possibility of differ-that can arise on large scales as a consequence of disorder.
ent regimes of complex and interesting behavior arising iriThe only interaction included is the hard-core constraint,
these systemfgl]. In the theoretical effort to delineate and which limits the allowed occupancy of each site. We obtain
explore regimes of different behavior, an important role isthe exact steady state of the disordered drop-push process in
played by simple models that capture some features of morall dimensions in a system with disorder, interactions, and
complex physical systems. In this paper we study disorderedrive[9]. We also study the disordered asymmetric exclusion
driven diffusive systems by analyzing stochastically evolv-process by numerical simulations and within a mean-field
ing lattice gas models, with quenched disordered hoppingpproximation.
rates[2]. In the remainder of this introduction, we discuss the dif-

Driven diffusive systems in the absence of disorder havderent types of behavior displayed by the lattice gas models
been studied extensively and are reviewefldh Also, sys- under study. We find three distinct regimes in disordered
tems with disorder and drive but no interactions betweerdriven diffusive systems in one dimension.
particles are well studied and understddfl However, there In the homogeneousegime, the state of the system is
have been only sporadic studies of disordered driven diffucharacterized by a single density and a nonzero current.
sive systems of interacting particles. It has been argued th&uenched disorder induces variations of the density on the
strong enough random site dilution can substantially affectnicroscopic scale, of the order of a few lattice spacings.
the transport properties of particles with hard-core interacHowever, the system has a macroscopically homogeneous
tions and can make the system respond nonmonotonically tdensity. In the thermodynamic limit, the current approaches
the driving field[5,6]. On the other hand, a low concentra- a finite value.
tion of blocked sites was found numerically not to affect the In the segregated-densitsegime, the state of the system
critical behavior of a driven lattice gas with additional attrac-is characterized by two distinct values of density and a non-
tive interparticle interaction7]. Finally, a driven lattice gas zero current. Besides microscopic-scale variations of the
with a quenched noise distribution was studied using fielddensity, there are macroscopic regions with differing high
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1 1 drop-push proces¢$DDPP and the disordered asymmetric
simple exclusion proced®ASEP. The models are defined
WWW‘%WWW‘WWWW in detail in Secs. Il and lll, respectively, but for the purpose
R of discussion here, it suffices to note that the models are
similar in that there is a maximum occupancy of each site in
05 o both and are different in the dynamical moves: attempted
0 i L o i L nearest-neighbor jumps in the DASEP and slightly longer-
ranged leapfrogging moves in the DDPP.
c The absence of detailed balance, together with the break-
ing of translational invariance, in disordered off-equilibrium
systems makes the characterization of even the stationary
state difficult in general. It is shown that the steady state of
the disordered drop-push process can be found explicitly.
This determination, which is based on the condition of pair-
0 i L wise balanc€10], shows that a product measure form is
valid in all dimensions. The form reflects the microscopic
FIG. 1. Representative steady-state density profiles fofahe inhomogeneities coming from the underlying disorder and
homogeneoudp) segregated-density, arid) vanishing-current re-  results in a macroscopically homogeneous state.
gimes in the disordered asymmetric exclusion process. For the disordered asymmetric exclusion process, the
steady-state measure is not analytically characterizable and

and low densities. The state is thus characterized by phadée study the problem within a sitewise inhomogeneous
separation of the density and a spatially constant timemean-field theory and by numerical simulation. The result
averaged current that remains finite in the thermodynami€lepends crucially on whether or not the system has back-
limit. bends, which are stretches of the lattice where the local bias
In the vanishing-currentegime, the state of the system is is against the particle flow. In the no-backbend case, when
characterized by two distinct values of the density and arthe average particle density is sufficiently away from 1/2, the
essentially zero current. The hallmark of this regime is thagpatial profile of the density has microscopic shocks, but is
the current decreases as the system size increases and vHAform on macroscopic scalg&ig. 1(a)]. However, in a
ishes in the thermodynamic limit. This is a consequence ofinite region around half filling, disorder induces phase sepa-
rare but rate-limiting backbends, or stretches of bonds thdition into macroscopic regions of high and low denfiig.
disfavor the forward flow of current. The density is inhomo- 1(b)]. We give approximate arguments to understand the ori-
geneous on a macroscopic scale. gin and nature of this phase separation and to obtain the form
The density profiles in typical states in each of the threeof the phase diagram in the current-density plane. This sort
regimes are depicted in Fig. 1, while Fig. 2 shows the varia®f behavior has also been seen earlier in a model with a
tion of the current with system size in the three cases.  Single weak bon{i11]. We argue that disorder-induced phase
Examples of these behaviors are discussed in this pap&eparation is a generic feature of systems in which the cur-

for two types of lattice gas models, namely, the disorderedentJ versus density shows a maximum at some interme-
diate density, in the absence of disorder.
We noticed an intriguing symmetry of the current in the
A R totally asymmetric DASEP. A typical configuration of
01l . ° ° - . | quenched disorder is not symmetric under reflection, nor is
the steady state. Despite this, we find that the current is in-
variant, up to a sign, under reflection. Strong support for this
J unexpected invariance is obtained from numerical studies.
In the version of the DASEP in which the easy direction
. of hopping is itself a quenched random variable, the model
\ represents a system of hard-core particles in a random poten-
ocoil 0 — ] tial with an overall downward tilt, but with backbends of
-------------------- L} arbitrary length. Long backbends severely limit the maxi-
- mum current that can flow through the system and in fact the
. . current decreases to zero as the system size incréaiggs
100 1000 2); the system is in the vanishing-current regime.
L Although our emphasis in this paper is on the analysis of
FIG. 2. Variation of the steady-state current with the system sizéattlce m(_)dels, we _commenF briefly on c_:er_taln constraints
for the three DASEP regimes of Fig. (&) homogeneougcircleg, ~ that are important in a continuum description. Such a de-
(b) segregated-density(triangles, and (c) vanishing-current SCription is expected to be valid for the large-scale, long-time
(squareS In (a) and (b) the current approaches a f|n|te Va|ue in the behaVIOI‘ and |S ba.sed on StOChaStIC d|fferent|a| equat'ons |n'
thermodynamic limit, whereas iffic) the current vanishes as a Volving appropriate coarse-grained variables. It is argued
power of the system size. The dashed line corresponds to that quenched randomness is manifest in random multiplica-
=0.125, which is the limiting value of the current in regiri® for ~ tive coefficients in a gradient expansion. Conservation of
the chosen values of the parameters. particle number, which implies spatial constancy of the cur-
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|

’?O FIG. 4. Disordered drop-push process configuration and move in

gravity d=1.

(with unit vectors{»|v=1, ... d}). At each siter is a well
that can hold at modl, particles(Figs. 4 and b with |,’s
chosen independently from some probability distribution
P(1). The configuratior® of the system is specified by speci-

FIG. 3. Schematic diagram of water flowing down a ruggedfying the set of occupation numbergn,} with 0<n,
hillside. Water from a lake higher up cascades downhill, under the<| ~vr. Further, assigned to each site is a set
action of gravity, until it finds a partially filled lake. The unequal {e(n;|1,);n,=1,... )} of positive random numbers chosen
capacities of the lakes are the quenched variables in the system. from some given distributiofil5]. The dynamics is stochas-
tic. In a time intervaldt, with a probabilityp..,.e(n,|l,)dt,
tife topmost particle in the wetl hops out and drops into a
In one dimension, using a well known mappifig], the well rieV., |.E., into the.ad]acent W(_all in the vth dlrectlon._
particle models are equivalent to stochastic growth models overe{pi” o 1’.' ' 'g,d} IS a set offlte-lndepgndent positive
a one-dimensionallD) interface moving in a 2D medium. nuAmbers satisfying,—(p,+p-,)=1. Now, if the wellr

The interface moves with a speed proportional to the current €, is already full, then the particle gets pushed further,
in the particle model. The disordered jump rates now becom@reserving the direction of the initial jumfp the next site
local growth rates, which are disordered in a columnar fash@nd so on. The cascade of transfers terminates once a par-
ion for the moving interfacd13]. The three principal re- tially full well is encountered. Note that here the set of jump
gimes of behavior discussed above for the particle model&tes{e(n;|I;)} is site dependent as well as a function of the
translate into distinct regimes for interface motion, namely, 0ccupation numbers. These rates, together with the well
(i) a moving interface with normal roughness) a moving depths{l,}, constitute the quenched random variables in the
interface with large segments with different mean slopes, anfnodel. The set of probabilitiegp...,} determines the direc-
(iii ) an interface with different-slope segments, which is station of the global bia£=2‘3:1(pp— p_,)e, and, as will be
tionary in the thermodynamic limit. shown in Sec. Il B, also the direction and magnitude of the
The paper is organized as follows. In Sec. Il we definesteady state current in the model. However, the probabilities
and discuss the steady-state properties of the disorderetb not enter the expression for the normalized invariant mea-
drop-push process in arbitrary dimensionality. The disorsure. Though all the results we will discuss hold for any
dered asymmetric exclusion process with only forward-easyarbitrary choice of the's, in a physical system they should
direction hopping but quenched random rates is discussed ine determined from the details of the trapping mechanisms,
Sec. IllI; the invariance of the current under reflection is dis-etc., e.g., they may be taken to be of the Kramers form
cussed in the Appendix. The case in which there are some(n,|l,)<exd —g(l,—n,)] for situations where the jumps are
backward-easy-direction bonds is discussed in Sec. IV. lactivated 16].
Sec. V we discuss the constraints on a continuum descrip-
tion, while Sec. VI discusses the implications of our results B. Invariant measure
for models interface growth in the presence of columnar dis-
order. Section VIl is the conclusion.

rent in the steady state, imposes strong constraints on the
terms.

The time evolution of the probability?(C) for the system

to be in configuratior® is given by the master equatidh7]
The drop-push process was initially introduced &210]

/—> 1) P,€Q21I3)
as a model of activated flow involving transport through a @
series of traps of equal depths. The dynamics consists of A 1@
activated hops together with a cascade of overflows follow- ’ ‘
ing each move. The disordered version of the model may be

considered as a discrete model of activated fluid flow down B, €D B L

II. DISORDERED DROP-PUSH PROCESS

an inclined rugged slope with lakes of varying depths; see
Figs. 3 and 4. This is similar to the above-threshold behavior P
of the model considered iri4]. In this section we show that B il e Mol M
the steady state and current can be found exactly in all di- H ’ ’
mensions for the DDPP and its generalizations.

A. Model
ode FIG. 5. DDPP model ird=2. The model can be generalized to

The model ind dimensions is defined on a hypercubic d>2 (see the te3t The ratese(n,|l,) depend on the well depth
lattice with periodic boundary conditions along all tthexes  as well as the occupation numhey.
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d
—P(C)=2, W(C"—CO)P(C") — 2, W(C—C")P(C). N
dt CU C! . .

@) o o

Here theW's are the transition matrix elements identified

with the ratese defined in the model; e.g., if the transition

C—C' involves moving the topmost of the, particles atr /\

to r’ along thevth direction, thedW(C—C')=p,€.(n|l,).

The steady state or the invariant measure of the dynamics is o : —lﬂ_ —|ﬂ

the set of time-independent weighfg (C)} satisfying Eq.

(1) above. Hence the problem of finding the invariant mea-

sure reduces to that of finding a set of positive weights r

{u(C)} such that the total incoming flux into any configura-

tion C [the first sum in Eq(1)] equals the total flux out of o

[the second sum in Eq1)]. The uniqueness of the invariant ® )

measure is ensured by the connectedness property &Vthe ®

matrix, i.e., every configuration can be reached from any —

other by a sequence of transitiofts/]. FIG. 6. Construction of configurations satisfying the pairwise
We claim that thelunnormalizedd measure of configura- palance condition = 1.

tion C({n,}) in the steady state has the product form

K
®

- @@
- 00
S

19 ]

sinceC andC" differ only at the siteg” andr. As can be
_ explicitly checked, conditior(6) is satisfied in view of the
w(C) H Ur(n)- @ form of the weightsu,(n,). The prescription above ensures a
one-to-one correspondence between configurat@hsnd
Hereu, are the single-site weights defined as C—C' transitions.
_ In the limit of largeL we use the grand canonical descrip-
1 if n,=0 tion and write the normalized probability of configuratién

©)

u(n;)= r(1), .. o) if 0<n=I. in the steady state as

where 7,(n,;)=ey/€(n,|l;), with €, being a microscopic P(C):ZNPM(C) 0
rate. '

To show that Eq(2) is indeed the invariant measure for H Z,

the DDPP we show that it is possible to associate configura-

tion C" in a one-to-one correspondence with evéryob-  where the site generating functions are given by
tained fromC by an elementary transition such that

|r
W(C—C")u(C)=W(C"=C)u(C"). 4) ZFﬂE:O ue(n,)z" 8
The above is the condition gfairwise balancg10], which

. . . andN, is the number of particles in the configuration. Here
ensures cancellation of terms corresponding to pairs of tra

sitions, one from each sum on the right-hand side of(Ex. " is the fugacity and will be shown to be directly related to

o . . he steady-state current. The mean particle density at ste
Pairwise balance has been used earlier to find the steaté;f Y P y

states of translationally invariant systefi®,18. We now ven as(n;) =24 In Zr/_az [19]. Thus the fugacite is re-
see that it can be usec)i/ effectively t}:) dgfce%he steady staltaet ed to the mean particle densjayof the system through
of a disordered system as well. 1 7

Suppose that the transitidh—C’ involves hopping a par- p= FE (ny= VE
ticle at siter to a siter’=r+Ar’e, with all the wells in ' '
between along theth axis full (Fig. 6). Then identifyr”  The steady state is characterized by a spatially unifotmt
such that the welk”=r—Ar"e, is not full but all wells inhomogeneous site densities.

betweenr” and r are full. The configuratiorC” is con-

dInZz
Jz

C)

structed such that it is identical that all sites except at sites C. Steady-state current
" H no_ "n__ _ H 14 ) L. i . .
r"andr, at whichn;,=n;»+1 andn;=n,—1. WithC" thus For simplicity of presentation, we first derive a closed
defined, the pairwise balance conditieh form expression for the steady-state currdgtfor the 1D
fully asymmetric model. Then we use these results to write
enInI] u(n)= e(n’r’”“r,,)n u(nf) (5)  down the current for the generdtdimensional case.
r r

(i) d=1, with forward jumps. In this case, for notational
convenience, we replace the lattice site indelxy a single
reduces to integer indexi. Further, we allow jumps only in one direc-
Y Y tion (v=1:p;=p,p_1=0). For an infinite system we write
e[l )upr(nemur(n) = e(nplmue(ni)u(ny) - (6)  the current; ;. in the bond {,i+1) as
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lj Now we use the result for the fully asymmetric case above

Jii+1= E E pe(nj|lj)Pj(nj)_H. P(ly) for each of these currents separately to obtdin, ;=Jg
"= Jks =(P1—P-1)€0zZ.

L (iii) d>1. To generalize the above resultsdo-1 we
+ 2 pe(n;|l,)Pi(n;) (10) note that for the DDPP id>1, the invariant measur@) is

nj=1 the same as if we were to single out a particular direction,

say v, and allow jumps only along that direction. Together

where with the direction preservation of individual jumps, this al-

N lows us to write the expression for the current in any dimen-
Pi(n;) =u;(n;)Z"/Z; 1) sjon:

is the probability that sité has occupancy; . Note that the
product form of the measur@®) has been exploited to write 0= Z (P,—p-,)e,
the above expression with decoupled joint probabilities.

It is cumbersome and not very instructive to perform the
sum in Eq.(10) to obtain the current in a closed form. In-
stead we use the spatial constancy of the current in the stea
state to arrive at the result. We note that in the above expres
sion the first term represents the contribution of jumps or|g|—
nating from sitg to the left of sitei with all sites in between
full. The second sum represents jumps from the isitself

€0Z= €pZ E (14)

whereE=39_,(p,—p_,)e, is the external drive. As in the

g 1 case, the magnitude and the direction of the steady-
tate current do not depend upon the detailed arrangements

of the wells.

D. Static two-point correlation functions

contributing toJ; j ;. The first sum may be rewritten as Because of the product form of the measure, the con-
nected part of the equal-time density-density correlation
function
Pi(n)| 2 e(ni|1)P;(n H Pe(l)
J<i=1n <ksi—1 Gr(Ar):<nrnr+Ar>_<nr><nr+Ar> (15)
Ii_ . . . .
. 21 [ p vanishes identically foAr # 0. Consequently, the fluctuation
n el €Ni—glli-0)Pi-a(Mi-y) . of the number of particles im consecutive sites along a
straight line can be computed exactly:
The quantity within square brackets is immediately recog- i+r P . 5\2
m;ed to beJ;_,; by comparing it vylth 'Eq(lo). Physically, (r) | 2 (=) | )= 2 (z—) Inz;.
this means that of all jumps contributing 3p_,;, those for j=T+1 j=i+1\ 0z

which sitei is completely full also contribute td; ;. (16

Hence we have the recursion
The second step follows from the product form of the mea-

I sure.
Jiis1=Pi(1NJi_1i+ > pe(n|l)Pi(n;) (12) Ford=1, a standard mapping discussed in Sec. VI intro-
' Toni= duces height variables defined by
relatingJ; j +; to Ji_1; . Now, since{P;(n;)} are the steady- _ N
state site probabilities and since in the steady state all the h'_g‘i 2({ny)=my). (17
bond currents must be equ@le., J; i1 1=Ji_1;=---=Jo),
from Eq. (12) we obtain Evidently,Fiz(r) is the equal-time height-height correlation

{(h;+,—h;)?). Averaging over the disorder distribution gives

2, e(ni[l)Pi(n) fned bY 201y 1] s 1

_n- _ ined byI'“(r)~r=*] is 1/2.
‘]0 1—P|(||) Pegz (13)

I'?(r)~r, implying that the “roughness” exponent [de-

E. Two-rate DDPP model: Explicit results
where Eqs(2) and (11) have been used in the second step
above.

Note that the steady-state current does not depend upgn
the detailed spatial arrangement of wells. It is only a func-
tion, through the fugacity, of the density and the total num-
(kj)iesroi)(;ev;/ells of different types in a particular realization of Prolx=e€,)=1—f, Prolix=e¢,)="f. (18)

(i) d=1, with jumps in both directions. We can write the This model has the essential ingredients of disorder present
currentJ; ;.1 in bond (,i+1) as the difference between the in the original DDPP, yet it is simple enough that explicit,
currentJI i+, due to the rightward jumps and the current closed form relations between the mean densignd fugac-

JI i1 due to the leftward jumps. This can be done since inity z, and hence the steady-state currdptcan be written
each cascade the direction of the initial jump is preserveddown.

Let us consider a drop-push model where the maximum
gccupancy of each site is restricted to one, ilgs1 Vr,
ut the hopping rates, (1) are disordered and chosen inde-
pendently from the binary distribution
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Let us denote by, andZ, the site generating functions | I

1
for thea and theb sites, respectively. Using Eq®) and(2), A\ ~\
-@ O—@-

these are given byZ,=1+¢pzle, and Zp=1+¢€yZ/ €. =
Now, since the fractions oA andb sites are +f andf,

respectively, Eq(9) reduces to /\

_(1—f)—F 19 C o
p_( )Ea+602 6b+602- ( )

This can be easily inverted to obtainas a function ofp,
e.g., forf=1/2 ande,= €= €,/q we obtain

)

G/

®
I

!
I
()
¢/
)
\/

T
N
I

_N(1-a)*(12-p)*+q—(1+q)(1/2—p)

(20)
Sincez(p) is known, the steady-state current is trivially ob- = -. O . .’ -
[ [
[ [

tained from Eq(14). Finally, the correlation functioﬁiz(r) \/ [
of Eq. (16), upon disorder averaging, may be written as |
FIG. 7. GDDP configuration and moves 2.

(9 2
Fz(r)=r(zﬁ) [(1—f)In Z,+f In Z,]
we chosea’s and 8’s such that

1 z qz
=Z a3, =K, 22
o where K is a constant independent of As we will see
wherez is given by Eq.(20) above. below, this particular choice of the jump rates allows the
exact determination of the invariant measure of the model.
F. Generalized disordered drop-push process Physically this choice is quite reasonable since it implies that

We may consider a generalized version of the disorderque sites that ﬁcf ;S_ tr:aps ford pqmcl(elzew o) are mgre
drop-push process in which, in addition to the particlelransparentto holesigh 5;) and vice versa. As pointed out

moves, independent hole moves are also allowed. For sirrﬁ""r“er'_the nondisordered version of this model, ifex,
plicity we restrict ourselves to the generalized version of the- @:8r=#8 Vr} in one dimension, is the lattice gas equiva-
nt of the low-noise driven Toom interface dynamij€].

single-occupancy DDPP introduced above. This generalizelﬁ3 : ) X X
model(GDDP) may be regarded as the disordered lattice gas | N€ master equatiofl) governing the time evolution of
analog of the Toom interface dynamics in the low-noise limitth® System now includes terms corresponding to hole moves
[20]: see Sec. VI. The techniques developed for the DDPFE'S well. Since each microstep mvolv_es_elther on_ly partlcle
may be used to obtain the exact steady-state measure aftPVes or hole moves, we use the principle of pairwise bal-

other quantities such as current and static correlations prce for the particle moves and hole moves separately. We
vided a certain conditiof(22) below] is met. work in the grand canonical picture in the thermodynamic

The model ind dimensions is defined on a hypercubic Iimi;. | il I dihei )
lattice with periodic boundary conditions along all thexes If only particle moves were allowed the invariant measure

(with unit vectors{e,|v=1, ... d}), similar to the DDPP. would be given by

Each siter of the lattice can hold either a particla,&1) or

a hole ,=0). The configuratiorC of the system is speci- ,upart(C)zl_[ u,(n,). (23
fied by specifying the occupation number of each Wall} '
with (n, €{0,1} Vr). Further, assigned to each sitels a

pair of positive random numbersg(,3,) chosen from some The single-site weights are given by

distribution. The dynamics is stochastic and is very similar to 1 if n.=0
that for the DDPP dynamics: In a time intendd, a particle u(n,) = T (24)
at siter is exchanged with the closest hole in thevth €olay if n=1.

direction with a probabilityp.. ,«,dt (Fig. 7). For identical ) ) _ ) _
particles this move is equivalent to a cascade of particidntroducing the fugacity and site generating functiors
moves terminating at the first vacant site as in the drop-pusfr 12z (1), we canwrite the normalized single site prob-
dynamics. Likewise, in an intervalt, a hole at siter is abilities asPP2"'(0)=1/Z, and PP2"(1)=zy (1)/Z, .
exchanged with the closest particle along thh direction Similarly, with only the hole moves, the invariant mea-
with probability g, 3,dt. This can be looked upon as a cas- Sure has the product form

cade of hole moves analogous to the cascade of particle

moves. Here, as in the DDPP, the's andq,’s are all non- _

negative and satisf9_,(a,+a_,)=1 (a=p,q). Further ol €) H or(Ne), @9
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wheren,=1 (0) refers to the presendabsencgof a hole. & i
The single site weights, are given by P
1 if n,=0 --0 ® ® O O ®--
o=\ g i =1 26 o
1 i+1

Introducing the fugacity for holes and site generating func-  FiG. 8. Disordered fully asymmetric simple exclusion process
tions Y,=1+yv,(1), we canwrite the normalized single- and moves ird=1.

site probabilites as P''®(0)=1/Y, and P"'%1)
=yv (1)/Y,. For the model defined above no analytically exact charac-
Now, since each site is occupied either by a particle or aerization of the steady-state measure could be obtained. The
hole, we must havePP2"'(0)=PI°'%(1) and PP2"(1) difficulty can be traced to the fact that actual completion of a
=P°'%(0). Using the detailed forms d®P2""s andP"°'®s,  jump depends not only on the originating sitarough the
we arrive at the conditioi22) with K= egyz. If this condi-  attempt ratgbut also on the particular configuration. This is
tion is satisfied then the invariant measure for the GDDP ign contrast to the drop-push models of earlier sections, where
given by either Eq(23) or Eq. (25), since both are equiva- an attempted jump is always completed. A simpler aymmet-
lent. ric exclusion model in which there is only one defect bond
In a similar manner as for the DDPP the current due to thdas been studied in detail by Janowsky and Leboyits,
particle moves and hole moves may be computed. The totdut in this case too the exact steady-state measure is not
particle current due to both types of movesdidimensions, known. We use Monte Carlo simulations and a mean-field
is given by approximation to demonstrate some striking effects of
quenched disorder.

d d
J_BI 6022 (p,—p- ,,)é,,— 60)/2 (9,—q- ,,)é,,. B. Current-density plot and density profile in steady state
v=1 v=1

(27) Figure 9 shows the steady-state currénts mean density
p plot, obtained from MC simulations, for a system of size
As for the DDPP, static density-density correlations in theL =8000 and the rates chosen from the binary distribution
steady state vanish identically on account of the product
form of the steady-state measure.dr 1 the height-height Profa=r)=f, Profa=1)=1-f. (28)
correlation is given by Eq16).
Heref is the fraction of weak bonds andis a measure of
lll. DISORDERED ASYMMETRIC SIMPLE EXCLUSION the strength of the weak bonds. We used the vahies/2
PROCESS andf=1/2 in our numerical work. For a specified mean den-
sity p, a random initial distribution oN,= pL particles orL
The asymmetric simple exclusion process is a prototypisites is chosen and the system is allowed to settle into a
cal model for studying nonequilibrium phenomena in thesteady state by evolving it for a sufficiently large number of
context of lattice gase21,22. When discussing the effect MC steps. Then the current across each bond is obtained by
of quenched disorder, it is important to distinguish betweercounting the total number of jumps across that bond, over a
cases in whicl{a) the easy direction of hopping in each bond
is the same but hopping rates are random @)dhe easy y y -
direction is itself a random variable. The latter case is studied i I g apaisgtpacyuge

in Sec. IV. In this section, we consider a 1D system with 0.121 /_/,5" ">-,\_\
disorder of type(a) and show that quenched disorder can B

induce macroscopic phase separation. Using a variety of ar-
guments, we sketch the phase coexistence curve in the cur-

rent (J) —mean density ) plane. This agrees qualitatively J [ A A
with the results obtained from the Monte Ca(MC) simu- :
lations.
ations Mean-field - - -
Monte Carlo
A. Model - ESM
In one dimension, we define the disordered asymmetric
simple exclusion process on a ring lofsites. Each site can p 1

hold either one or zero particles. Assigned to each bond

(i,i+1) of the lattice is a quenched random ratg . ; cho- FIG. 9. Current-density plot for the DASEP for a given realiza-
sen independently from some probability distribution ion of disorder for a system of size=8000. The hopping rates are
Prob(a). The dynamics is stochastic: In a time interddla  chosen from the distributiof8) with r = f=1/2. The filled circles
particle at site attempts to hop, with probabilitge; ; +10dt,  are the MC results and the dashed line is the mean-field curve. The
to sitei + 1. The move is completed if and only if site-1 is  solid line represents thép curve for the fully segregated model
unoccupiedsee Fig. 8. for the same values of the parameters.
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densities corresponding to regirBe A qualitatively similar
phenomenon has been found in a system with one defect
bond, studied if11].

The numberof different large-scale regions of high- and
low-density shows fluctuations from one realization of disor-
der to another. As the size of the system is increased, we
monitored the mean number of these regions and found that
it is nearly constant or perhaps increases very mildly, cer-
tainly much slower than linearly in the size of the system.
This implies that the characteristic length scale of density
segregation increases indefinitely in the thermodynamic
limit.

C. Mean-field approximation

We now turn to a mean-field approximation, which as-
sumes no correlations between site densities in the steady
state. We will see that it captures most of the steady-state
features found in the MC simulations above, including the
steady-state density profile.

i The time-averaged steady-state cur&nt, ; in the bond
. . ~ (i,i+1) is given byd; iy 1= @ i+ 1(Ni(1—Ni11)). In view of

FIG. 10. Density profiles for the DASEP for a system of size the mean-field approximatiofn;n;)=(n;}(n;) this reduces
L=38000 for a given realization of disorder at three fillingal p to
=0.8,(b) p=0.6, and(c) p=0.5. Shown in(d), (e), and(f) are the

blowups of the regions enclosed in the dashed boxé¢s)jrib), and Jiir1=ai s (N {1—niyq). (29
(c), respectively. Circles are MC profiles and the continuous lines
are mean-field results. To compute the steady-state currdrdas a function of the

mean particle density for a given realization of disorder,

large number of MC steps. An average of all the bond curwe use the two iteration schemes described below, which
rents thus computed is taken dg, as currents across all yield equivalent results.
bonds are equal in the steady stakgis a symmetric func- (i) Constant current iteration scheme. For a given system
tion of density aroungp=1/2 as a result of a certain sym- of size L and for a fixed valuel=J, for the current, we
metry with respect to particle-hole interchangee the Ap- iterate the set of equations
pendi¥y. As may be expected, the current for the disordered
system lies between the corresponding values of the two pure pi+1=1=Jdo/aijs1pi, 1=1,...L, (30
reference systems with=1 andr=1/2 on all the bonds. _ _ _ o
The more striking qualitative difference between the disor-around the chain starting with, say, some vapye(periodic
dered and pure systems is the appearance of a plateau Poundary Conl\?'lztlons_lmpthL:pi)_- If Jo is less than a
gime B in Fig. 9 for a range of densitiejp—1/2/<A. In  certain valuel ;. Which is the maximum current supported
this regime, the current is independent of the mean densitpy the system within the mean-field approximation, then the
and equals the maximum allowed current in the system. Théeration scheme converges, i.e., we get all the site densities
approximate sizé\ of regimeB, which is a function of and  in the physically acceptable rang®,1]. The average of
f, is obtained in Sec. Il E below. these site densities gives the mean density of the system

We studied the steady-state density profiles characterizegPrresponding to the stationary currdgt There are in gen-
by the set of site densitigp;=(n;)} in both regimesA and eral two values of the mean particle density corresponding to
B, using MC simulations. We found that in regimethe  an allowed value 0§, and the iteration scheme converges to
system is homogeneous on a macroscopic Sca|e’ while i@gne or the other depending on the initial value of the denSity
regimeB it shows macroscopic density segregation. FigureP1-
10 shows the steady-state density profiles for three represen- However, in this scheme we find that the number of itera-
tative mean densities, one from regirdeand two from re- tions required for convergence increases without bound, as
gime B. Evidently, there is a large qualitative difference be-the trial valueJ, gets closer tdy 7, from below. This diver-
tween the profiles in the two regimes. In regime[Fig.  gence of the iteration scheme is presumably due to the exis-
10(a)], there are density variatiorishocks only over micro-  tence of the plateau in thkvs p curve, i.e., there exist many
scopic scales; coarse graining over a few lattice spacinggalues ofp for Jo very close toJ\f,. Hence to obtain the
leads to a spatially uniform density. In contrast to this, in thedensity profile forp in the density segregated regime we
profiles corresponding to regim@ [Fig. 10b)], there are resort to theconstant densitjteration scheme described be-
density inhomogeneities over length scales comparable to tHew.
system sizel, in addition to the shocks on a microscopic (i) Constant density iteration scheme. In this scheme we
scale. This segregation into high- and low-density phasesyegin by assigning site densiti€8< p;(0)<1} to the lattice
with large shocks separating them, is reminiscent of phassites subjected to the constraint I(J¥;p;(0)=p. The site
separation and occurs over the full range of mean particlélensities are updated in parallel according to
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0.2571 " " " " ] ence systems, consisting of Xlland allY. In the disordered
system, since the steady-state current has to be spatially con-
stant, the possible densities are given by the four intersec-
tions of the lineJ=J, with the two parabolas. If the mean
density is in the rangp<1/2— A (or p=1/2+A), then the
allowed densities for theX and Y stretches arepq,p, (or
pa,p3), respectively. The current is in fact determined by the
density constraint (% f)p; 4(Jo)+ fp2.3(Jo)=p. The varia-

J 0 ) tion of density betweep, andp, (or p3 andp,) between the
L /v AN X andY stretches corresponds to the “subbands” seen in
A N Fig. 10(@). On a macroscopic scale, however, the system has
i R uniform density. Now consider what happens when the mean
0 q % p3 a 1 density is brought closer to 1/2. From Fig. 11 it is evident

that the current would tend to increase and would eventually
P reach the maximum allowed valug, ., (Which equalg/4 in
the thermodynamic limit, as argued belovs the density is
FIG. 11. Origin of phase separation in the DASEP. The tWOjncreased further, the current remains Constarﬂ:r(aatx, in
parabolas]=rp(1-p) (r=1.1/2) represent thé-p plots for the  5..4rdance with the maximum current principle, and the ex-
two reference nondisordered systems. cess density is taken care of by converting some ofXhe
) stretches of density, into ones withp, (or vice versa ifp
pi(t+1)=pi(t)+Ji_1;(1) = J;;+a(t), i=1,...L, >1/2). This conversion takes place adjacent to the largest
31 stretch ofY bonds, leading to two macroscopic regions of
. different mean densities, one with densitjgsp, for the X
where J; iy 1(t) = @i 11pi()[1—pi+1(t)] in view of EQ.  angy stretches and the other with ,ps. The position of the
(29). ) ) ) principal shock separating these regions is at the location of
We refer to this as the constant density scheme, since ifhe |argesty stretch. In the DASEP, the assumption of uni-
each iteration the total density remains unchanged, i.form density in each stretch is not really true, on account of
Zipi(t+1)=Zp;(t). After a sufficient number of iterations, he finite length of most of the stretches. However, the above
which depends upon the starting mean dengityhe set of  grqument provides a qualitative picture towards understand-
site densities converge to a set of numbgr$ and the cur- ing the reason for phase separation in the DASEP.
rent on each bond converges to the steady state cufgent In a certain respect, the reason for the phase separation in
The steady-state density profiles and thes p plot (O the DASEP is similar to that in the single-defect bond model
<p=1) for a given configuration of disorder obtained usingstuydied in[11]: Both have local segments in the system
these schemes is shown in Figs. 10 and 9, respectively. It ighere the maximum allowed current is less than that allowed
evident that the mean-field approximati¢29) reproduces everywhere else. In the single-defect bond model, phase
quite well not only thel-p relationship, but also the density separation takes place when the current carried by the rest of
profile, including the locations of shocks, though not thethe system, with presumed uniform density, is larger than the

shapes of individual shocks. maximum current allowed through the weak bond. In the
DASEP, with an extensive number of weak bonds, ltrg-
D. Qualitative explanation of phase separation est stretchof weak bonds acts as the CUrrent'”miting Seg-

Althouah th field imati fth di ment. The length of this stretch increases als With system
ough the mean-ield approximation ot the precedingg;, o anq in the thermodynamic limit the maximum allowed
subsection successfully reproduces many features in th

: . ; . Current in this stretch is/4, equal to the maximal current in
stheady state, Itt‘ dogs nlot ylelflha S|Imtple u_nd;}r;tandmg of thg pure system with only weak bonds.
phase separa io(Fig. 10 or the plateau in “p curve The essential point leading to phase separation is thus the
(Fig. 9 in terms of the macroscopic parameters of the model

) . . ~_maximum-current principle, coupled with localized current-
We conjecture that_underlyln_g the behavior Of_ th? DASEP InIimiting regions in the system. In the DASEP, this limit is
different regimes is a maximum-current principle: For a ’

) density. th ‘ iles int teady st tdetermined by long stretches of weak bonds and similar con-
given mean density, the system setlies nto a steady Stalgyq 41005 should apply in related models. Consequently, we
which maximizes the stationary current. Such a maximu

o . Myvould expect a density-segregated phase in disordered ver-
current principle has been used to describe phase separatigh <" of models that, in the absence of disorder, display a

in the asymmetric simple _exclusion process with OPeMnaximum in the steady-state current as a function of density.
boundary conditions by Krufe3].

To use the maximum-current principle to have a qualita-
tive understanding of the phase separation in the DASEP, let
us assume that the density in each stretch of like bonds is It is useful to define a model for which many of the ap-
uniform. This approximation is in fact essentially exact in proximations made in the preceding subsection are actually
the fully segregated model discussed in the following subexact. To this end, we study a fully segregated mge8&IM),
section. Let us denote stretches @&1 bonds byX and  which is obtained from the binary random model above by
stretches ofvx=r <1 bonds byY. The two parabolas in Fig. arranging all like bonds together. Thus, in this model, one
11 are the steady-staflevs p curves for the two pure refer- hastwo large stretches ok andY, of lengths (+f)L and

E. Fully segregated model
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FIG. 12. Representative density profiles of the FSM withf
=1/2 at three different fillings{a) p=0.24 (dotted, (b) p=p¢ FIG. 13. Phase coexistence curve for the FSM and the DASEP
=0.324(solid), and(c) p=0.4 (dashed The stretch ¢=1/2) is  for f=1/2. The solid parabola is the coexistence curve of the FSM.
in the rangei €[2000,6000. The inset shows the variation of the The circles and the triangles are, respectively, the MC and mean-
bulk densities in theX andY stretches as a function of the filling  field phase-coexistence curves for the DASEP. The dashed parabola
J=p(1—p) demarcates the allowed region for the DASEP.
fL, respectively. For the FSM in the thermodynamic limit,
the assumption of uniform density within each stretch is jusand are given byfMorlow=|,— 5= |/(phigh— plow) =~ Thjs
tified, as correlations due to the junctions decay with increastocking of the density in thé&/ stretch atp,=1/2 is a direct
ing separation, and may be neglected in the HaK. consequence of the maximum current principle introduced
Steady-state MC density profiles for the FSM at threeabove: Any change gf, from 1/2 would reduce the current
different fillings p<1/2 are shown in Fig. 12: Symmetry in Y and hence in the full system. All the arguments above
under particle-hole exchange implies analogous behavior fagan be applied fop>1/2 because of particle-hole symmetry.
p=1/2 (Appendiy. For low densities §<p.), the two  Thus, forp, <p<p. the state of the segregated model is
stretches have uniform bulk densitipg and p, related to analogous to the phase separated regBnef the random
each other by the requirement of equality of the two bulkmodel. The size of regim8& in the FSM is given by A

currents =pd —p. =1-r/2. It closely approximates the size of the
px(1=p)=Tp,(1—p,)=Jg (32) B regime in the DASERFig. 9.
and the density constraint F. Phase-coexistence curve
(1—H)py+fpy=p. (33) For the FSM, ag is varied we obtain differend, vs p

curves. The phase-coexistence curve in the current-density

These three equations determjng p, , andJ, uniquely for plane in the parametric form
a givenp. For f=1/2 we obtain

r 1 1
Jo==, pe==F-1-T, 35
4p—1—r=\(4p—1—1)2+8(1—r)p(1—2p) <4 PeT27a 89
py= ;
g 2(1-r) which is the parabold.=1/4—(1—2p.)? in Fig. 13.
P Tz (1 34 The difference between the phase boundaries of the
Px=2p=py, Jo=px(1=py). (39 DASEP and FSM(Fig. 13 comes from the fact that the

This is analogous to the macroscopically homogeneous Stat@terspersed weak-bond stretches in the DASEP have finite

of the fully random system engths and the density in these small stretches is not quite

o : | to 1/2. Close to the phase separation, we anticipate the
As the mean density is increased, the density of eacffdud " '
stretch increases, until, at a critical density=p; =3 Mmean density in & sfretch of !(ra)ngtﬂ in the DASEP _to be of
. . " . . the form py(1)=1/2=A(r)/1*", with a(r)>0. Using the
—zv1—r (the corresponding critical density on the higher .~ .~ . e
A Z : . . distribution of theY stretches, namelyRy(1)=2"", we ob-
side isp; =1~ p. ), py equals 1/AFig. 12. At this density, tain ther dependence of the critical density
the current equals the maximum possible currentYin
namely,Jo=Jmax="r/4. As p is increased furthep, andJ, L1
remain constant at 1/2 and4, respectively. The density pE=Z+PxiA(F)E| Pv(Dpy(l), (36)

change is adjusted by creating a density inhomogeneity in

e high |
stretchX. The two densitiep,'®" and p,’" are related by \yherep,(r<1)~r is the density in th& stretches near the

PQithFRLOW:hl, So tha:jt_ thhe clurrents i|n the two phases arephase transition. Comparing with the phase diagram for the
equal, i.e.,py'9"(1—py'9") =p,>"(1—p,")=r/4. This im-  FSM in Fig. 13, the correction ter@(r) seems to be posi-
plies p?'9M1oW= 1+ \1—r)/2 (see the inset in Fig. 22The tive for all r. Further, let us suppose that the current in the

fraction of these phases can be determined from a lever ruleSM is a lower bound to that in the DASEP, as suggested by
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biased diffusion of hard-core particles in the segniéxif] of

a 1D lattice, with the “optimal” boundary conditions(0)

=1 andp(l)=0; these boundary conditions force the largest
possible current through the segment, opposite to the bias.
The master equation that describes transport is invariant un-
der the interchange of particles and holes and simultaneous

relabeling of sites in reverse order, i.e,—n;_;. The

boundary conditions respect this symmetry, implying that the

steady-state density(j) at site j satisfiesp(j)=1—p(l

—1]). Thus, in the steady state the number of particles in the

01l® G F O AL E chkpend i$/2 irre;pectivg of 'ghe strength of the bgsThe

1 10 100 principal effect ‘?f, increasing is to 'sharpen the region that

marks the transition from the particle-rich half of the back-
r bend to the hole-rich half. The steady-state profile ap-
— proaches a step function centered atl/2 asg—1.

the () homogeneoutcircles and(b) segregated-densityriangles  ¢rossing sitd in unit time. Results of a Monte Carlo study

regimes. The_inset shows the site-averaged density-density correIES] are consistent with the largeasymptotic behavior

tion functionG(Ar) defined in Eq(15). The small negative values

at large|Ar| arise due to the finite size of the system.

10}

1"2

1
J|~e><p(—§|//\(g)), (37)
Fig. 13. Then the coexistence curve for the random system
must be quadratic near the critical poiR’€ 1/4p°=1/2),  where A(g) is a bias-induced length given by ~%(g)

being bounded by two quadratics, namgly, Jhp curve for =In{(1+g)/(1—g)}. This can be seen by writing the current
the pure systerﬂ=p(12— p) and the coexistence curve of the ithin a mean-field approximation ag=W(1+g)p;(1
FSMJ=1/4—-(1-2p)“. —pj+1)—W(1—g)p;+1(1—p;) and finding the value of

for which the boundary conditiongy=1 and p,=0 hold.
For I>A(g)>1, this leads tal~2ge '9 [5], in agreement
with Eq. (37) wheng is small.

Figure 14 shows the Monte Carlo results for the site- The origin of the facto# in the exponent in Eq:37) has
averaged density-density and height-height correlation funcheen discussed if6] and we recount the argument in brief.

tions G(Ar) and I'2(r) in both the homogeneous and The transport of a single particle through the backbend in-
density-segregated regimes of the DAS@?Ar) is seen to volves two (approximately causally independent steps that

decay rapidly over a few lattice spacings, accounting for thPCeur in parallel:(i) The topmost particl¢located at sitek

success of the mean-field approximation. It is found thaf™ /2 in large fields has to be activated a distarid@, which

2 . . requires an activation time,,,~exg3l/A(g)], and (ii) the
I(r) grows asr, implying a roughness exponeat=1/2. consequent hole that remains in the steady-state distribution
moves to the bottom and is filled up, by moving each/af
IV. DASEP WITH BACKBENDS particles up through a lattice spacing. The time required is

As discussed at the beginning of Sec. Ill, the introductionT2 @gain. The current is thus proportional tor;;; and
of randomness in the easy direction of individual bonds alconsequently follows E¢(37).
ters the properties of one-dimensional disordered exclusion Since, for fixedg, the largest current that can flow
process in a crucial way. We study this in this section. ~ through along backber{d>A(g)] is exponentially small in

The model is defined as follows. Assign quenched arrowdfs length, the largest current through the 1D lattice of length
(pointing either right or leftindependently to each bond of a L is determined by the lengttf (L) of the largest backbend
periodic chain, with probabilityf <3 for left arrows and 1~ encountered. Since the probability of occurrence$ obn-

—f for right arrows. An arrow defines the easy direction of Secutive left-pointing arrows on bonds is proportionafto
hopping on each bond: A particle-hole exchange across we may estimaté* from Lf'" =C, whereC is a constant of
bond occurs with ratev(1+g) if the particle moves along order unity. Substituting in Eq37), we find that the current
the direction of the arrow and/(1—g) if it moves opposite falls with increasing lattice size as

to the arrow. Since <3, there is an overall tendency for

particles to circulate rightward and the question is whether J(L)~L~?2, (38
there is a nonzero current even in the thermodynamic limit.

The model represents a system of hard-core particles inwaith 1= — A (g)Inf. Thus the current is expected to decay
random potential with a downward tilt. A conglomeration of as a power law irL, with a bias-dependent power, and to
left-pointing arrows constitutes a backbend, where the potensanish in the thermodynamic limit. Figure 15 shows the re-
tial climbs up before going down again. Within mean-field sult of Monte Carlo simulations.
theory it is possible to obtain an upper bouhdn the cur- As with the milder sort of disorder discussed in Sec. lll,
rent that can be carried by mutually excluding particlesthe state is strongly inhomogeneous and shows macroscopic
through a backbend of length[5]. To this end, consider regions of high and low density. Figurécl shows the time-

G. Correlations in the steady state
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%p(r,t)w*-j(p,r,t):o. (39

~~~~~~~ %.,\...,.\\N-~-fﬂ.~‘: The coarse-grained curredt may be phenomenologically
"""" i divided into three parts

\\\\\ : } J(r,0)=Jgydp(r,1).1)+ Jgise+ (1 1). (40

0.01 i

A local hydrodynamic assumption has been made in writing
the systematigart of the currentjSyS as a function of the

0.001 . local density, p(r,t). The explicit r dependence oﬁsyS
100 1000 comes from the breaking of translational invariance by

L guenched disorder and its exact formj@f,S depends on the

FIG. 15. Size dependence of the steady-state current in the backICroscopic dynamics of the model. Thiffusive current
bend model(DASEP with some reversed bond®r two sets of  Jgiss=D(r)- V[ p(r,t)—po(r)] involves a disordered diffu-
parameters(a) g=0.33f = 0.25 triangles and (b) g=0.54,f=0.3  sjon tensoD(r). The noisee(r,t) is to mimic, on a meso-
(circles. Each point represents an average o0 realizations  scopic scale, the stochastic nature of the evolution. It is usu-
of disorder andb) 100 realizations of disorder. The straight lines ally assumed to be Gaussian distributed @ncbrrelated in
have slopes of- 6/2 with #=0.5 and 1.0, respectively, as predicted space and time with vanishing spatial and temporal averages.
by Eq.(38). To obtain the time evolution of the density fluctuations

_ _ _ _ _ p=p(r,t)—po(r), we expandJgs in powers of p as
averaged density profile for a typical configuration of bonds.jS s(po(r),r)+5(r)5+i(r)732- .. and put it in Eq.(39).
There is a large shock around the rate-limiting backbendq—hyiS results in
which separates the two regions.

For fixed lattice sizeL with an associated longest back- 5=V .[D(r)-Vp—c(r)p—\(r)p?—--- —€(r,1)].
bend1* (L), the current is a nonmonotonic function gf (42
This can be seen as follows. ¢f is low enough that\(g) o ) _
>|*(L), linear response theory would imply that currént In one spatial dimension, the above reducegwih r

grows linearly withg. On the other hand, i is large enough  replaced withx) the form
thatA(g)<<1* (L), the current falls with increasing accord- ~ ~ ~ ~5
ing to Eq. (37). In between,J achieves a local maximum dp =3 D(X)dxp—Cc(X)p=A(X)p°—--- = n(x,1)],
when A (g=gman=1* (L), which impliesgax— 1/In L.
The argument given above implies that the current Came@vhich was considered ifi2]. In steady state, the time-

by a system of.hard-c_ore pgmcles through the. ra.nd.omhéveraged current must be independemnt.cks bothJ;;s and

backbending lattice vanishes in the thermodynamic limit, noE(X t) vanish under time averaging, the constraint to be sat-

matter how small the biag. This is in contrast to the behav- isfiéd is '

ior of noninteractingparticles in the same random environ-

ment, where the drift velocity vanishes only if the bias is Ix(Jsyd X)) =0, (43

strong enougt{25,6]. The difference can be traced to the

possibility, in the noninteracting case, of compensation by avhich is important to account for, as the coefficientslip,

large buildup of density at the bottom of a backbend, whichyre explicitly space dependent, i.efN(x)(p?)+---] must

then succeeds in driving a finite current over the backbend,gpish.

This option does not exist once repulsive hard-core interac- |n their attempt to study a continuum model that describes

tions come into play and the current vanishes in the thermoe pASEP, Becker and Janss@J) [8] write the current)’

dynamic limit. in powers of ¢(x,t)=p(x,t)—p, the density fluctuation
away from theoverall particle densityp in the system. In
one dimension, the form quotgd] for the DASEP is

r— 2

It is interesting to ask whether the behaviors found above T =(1=2p) ¢ = )+ 7lx), 49
in the disordered lattice gases can be reproduced usingdhere 7(x) is an additive quenched noise term. Since the
continuum description of the problem. Though we have notime-averaged densify,(x) varies in space, it is evident that
pursued this question to its logical end, we discuss in thisy has a nonzero expectation val(g(x,t))=po(x) — p. As
section some general constraints that a continuum descrigye have seen in Sec. lipg(x), and thug ¢(x,t)), can show
tion should satisfy. strong variations, especially in the density-segregated re-

The steady state of the disordered system of interactingime. Spatial constancy of the average current demands that

particles is described by a spatially varying time-averagedhe time average on the right-hand side of E4g) must
density profilepo(r)=(n(r)). The time evolutions of fluc- satisfy

tuations around the mean density profile are governed by the
continuity equation A (1=2p){ p(X,1))—{?(x, 1))+ p(x)]=0. (45

(42

V. CONTINUUM DESCRIPTION
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FIG. 17. Interface morphology in the three regimés: uni-
formly moving interface with a uniform slopgb) interface with
large segments of different slopes moving with a nonvanishing
i speed, andc) interface with large segments of different slopes
moving with a speed that vanishes in the thermodynamic limit. The

FIG. 16. Mapping between driven particle systemslinl and  insets show blowups of regions enclosed in the dashed boxes.
growing interfaces(a) Toom interface dynamics corresponding to

the GDDP andb) single-step model corresponding to the DASEP.

(b) Single-step Model

(e.g., in the DASEP with backbendsorresponds to local
backward growth(evaporation The quenched jump rates
for the particle moves implycolumnar disordered growth
Nates for the interface: The normal growth rate of the inter-
face at a fixed is the same irrespective of the location of the
terface at successive times. In the long time limit, the mean

Even when this condition is satisfied, it is not entirely clear
that this continuum theory actually represents the DASEP i
one dimension. BJ argue thatdfl/dp+0, then disorder is

irrelevant on the large scale, a conclusion that is supporte

by [2,26]. However, their conclusion that the condition local forward speed of the interface is the same at all points

— g o1
dJ/9p=0 holds only ifp=3 does not seem to be correct, at along the interface, being proportional to the spatially con-

least for the DASEP in one dimension; we have seen in SeGtant steady-state current of the corresponding particle

IV that there is an entire range of densities{(A<p=<1 model.
+A) wheredJ/dp vanishes, associated with segregation of We now discuss the various qualitatively different re-

density on a macroscopic scale. gimes that arise in the interface growth models. Figure 17
shows time-averaged steady-state interface prdfites cor-
VI. EQUIVALENT INTERFACE MODELS rltlaspondlgg to _the three regimes (ljlf ﬁrlven particle systen:js
IN ONE DIMENSION illustrated in Fig. 1 in Sec. I. In all three cases we starte

from an initially uniform profile, corresponding to a random

In one dimension, both the DASERith or without back-  distribution of particles on the lattice.
bends and the GDDP, for which the maximum occupancy Figure 17a) is an interface with a nonzero mean tilt,
per site is 1, are equivalent to stochastic growth models of ahich has net forward growth rate at all points. The interface
1D interface moving in a 2D medium. Corresponding to eacthas a uniform slope on a macroscopic scale and moves with
particle-hole configuratiofin;} is assigned an interface pro- a finite nonzero speed preserving its mean tilt. This case
file {H;} through H{=X;-;(1—2n;) [12]. Pictorially this corresponds to thédromogeneousegime depicted in Fig.
means that each particle corresponds te 45° downward 1(a). On a microscopic scale the interface has frozen-in
line segment, while a hole corresponds to an upward oneoughnessFig. 17@a), insef corresponding to the micro-
(Fig. 16. Thus clusters of particles and holes translate tascopic shocks in the steady-state density profile of Fig). 1
+45° slope segments and the interface has a mean slope thatlf the mean tilt vanishes, but the interface still has a net
vanishes when the particle density is 1/2. Away from halfforward growth rate at all points, then the initial uniform
filling, periodic boundary condition for the lattice becomes aprofile att=0 coarsens into large segments of different mean
helical boundary condition for the interface. Junctions be-slopes at long timefFig. 17b)]. These segments have fro-
tween adjacent particle and hole clusters correspond to cozen roughness on microscopic scales, similar to the nonzero
ners in the interface profile. tilt case[Fig. 17b), insel. The interface moves with a finite

Evolution of the interface is dictated by the dynamics ofspeed preserving its mean shape and mean vanishing tilt.
the corresponding particle system. The GDDP correspondghis corresponds to theegregated-densityegime of Fig.
to the slicewise motion of segments of a Toom interface inl(b).
the low noise limif20], while the DASEP correspondsto the  In addition to the frozen roughness on the microscopic
corner-flip “single-step” growth mode[12] (Fig. 16. In  scales, we can define the kinetic roughness as the equal-time
both cases particle movement to the rigbt hole move to mean-square height fluctuations around the steady-state pro-
left in the GDDB corresponds to local forward growth file. We consider the zero-mean height variablegt)
(deposition of the interface, while a leftward particle move =H;(t)—(H;) defined in Eq.(17) and define the roughness
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exponenta through ((h;,,—h;)?)~r?®. As discussed in Disorder can lead to macroscopically nonhomogeneous
Secs. Il D, Il E, and lll F, the roughness exponent 1/2 in states, as in the 1D disordered asymmetric simple exclusion
both cases above. process. Our numerical and mean-field results show that a

In Fig. 17c), which corresponds to theanishing-current macroscopically density-segregated state occurs in the
regime of Fig. 1c), the profile resembles that correspondingDASEP model with no backbends, for densities in a finite
to the segregated-density regime in that it has large segmentange around half filling. The origin of density separation is
of different mean slopes. However, in this case the interfaceraceable to the existence of a largest current that can be
is stationary in the thermodynamic limit, reflecting the van-carried by a stretch of weak bonds. This low current can be
ishing of the steady-state current in the particle system. IBustained in the rest of the lattice only by separating the
interface language, this situation can be visualized as a cagfnsity into distinct large and small values in macroscopic
pf interface grovvth where there are local stret.ches of thﬁ"egions of the lattice.
interface having a net backward growtevaporatiop rate. Backbends introduce a third type of possible behavior in
Though, on the average, there are more forward-growth resne gimension. Like the stretch of weak forward bonds in the
gions than backward-growth ones, in the limit of large syS—yongity_segregated regime, a backbend rate limits the cur-

tem siz_e, arbitrarily long evaporation stretches effectivelyrent leading to density segregation. However, there is an
pin the interface. ’ '

Turning now to continuum description of the dynamics Oflmportant difference: The longer the stretch of weak forward

these interfaces, at least in the cases where the mean speecP oF td Sy :htehclcl)ser theihcurrte n;c tr? af finite asyl;rj ptogcbvalge. 12
growth is nonzero, the sum in the definition of the heightCon rast, the fonger the stretch of reverse-biased bonds, the

variable is replaced by an integral of the coarse-grained paF;_maller the current: It decreases exponentially fast with back-
ticle density H(x,t)=[X[1—2p(x’,t)]dx’. The growth bend length. Since the probability of occurrence of a back-

equation forH(x,t) is governed by(spatially integrated bend decreases exponentially with its length, the result is a
one-dimensional version of the continuity equati39): currgnt that decre_ases as a bias-dependent power of the over-
GH(x,t)=J(dH,x,t). The fluctuations h(x,t)=H(x,t)  all size of the lattice.
—Ho(x) in H around the steady-state profilely(X) The crucial physical point that underlies the behavior in
=(H(x,t)) are governed by each of these regimes is the requirement that the steady-state
current be constant at all points in the system. Continuum
1 field-theoretical approaches must ensure that this local con-
dth=D(x)dxh—c(x)dch+ 57\(X)f9xthr S 2p(X1), straint is respected; while this is automatically ensured for
(46) translationally invariant systems, it may need special care to
guarantee in disordered systems.
obtained by integrating E¢42). The absence of any additive It would be of interest to generalize our results to higher
quenched spatial noise term in Eg6) is due to the spatial dimensions and also to include interactions between particles
constancy of the growth speed of the interface dictated by that different sites. A few scattered results along these lines are
same constraint on the steady-state current. In this respeavailable.
Eq. (46) differs from the model discussed [i#7] where such (i) For the drop-push class of problems, we have seen in
a term arises naturally due to the absence of any such cosec. Il that the exact steady state even in higher dimensions
straints. As can be readily verified by power counting, anis characterized by inhomogeneous product measure. On
additive quenched columnar term is highly relevant in the|arge scales, this leads to a homogeneous state.
renormalization-group sense and leads to much rougher in- (jj) The transport of particles with hard-core interactions

terfaces than the:=1/2 interfaces described by E@6). through the infinite cluster of a randomly diluted lattice
above the percolation concentration has been studiel.
VIl. CONCLUSION In a certain regime of dilution, backbends act as local traps,

In thi h tudied the stati tbu'[ unlike the one-dimensional case considered in Sec. IV,
carrn in Isstg'?epserofméleiivee;lwlaatficue Ieas meo dseﬁsl(\av?ﬁ\ry Lfelzjr:::ehne-here exist infinitely long paths on which the length of every
ying 9 9 ackbend is less than a fixed val®8,5,§. The subnetwork

disordered hopping rates. The principal results are of tWOfsuch aths is expected to carry a current that then remains
types: first the exact determination of the steady states fora ~ . P P carry a .
pite in the thermodynamic limit. There is thus no

class of disordered models and second the demarcation N . . .
nishing-current regime in this system.

distinct regimes of behavior on macroscopic length scales, a@nis , -0 , .
(iii) With attractive interactions between particles, the

a result of disorder. In this section we briefly review these X 3 - e
results and discuss some related open problems. driven lattice gas system with nearest-neighbor hopping is

The steady states of a family of disordered models, th&nown to undergo phase separation below a certain tempera-
disordered drop-push process and related models, have bekiie[29,3]. A numerical simulation showed that the addition
found in all dimensions by an application of the condition of of @ low concentration of blocked sites did not alter the criti-
pairwise balance. The result is a product measure state, witgl behavior of this systeiv].
site-dependent weights, reflecting the microscopic disorder More systematic studies of higher-dimensional systems
in the model. The current has been computed as well. Thare called for. In particular, it would be interesting to know
system is characterized by a strictly uniform current densitywhether disorder-induced large-scale inhomogeneities, akin
and a coarse-gained particle density that is approximatelto the phase separation found in one dimension, persist in
uniform. On a macroscopic scale, the state is homogeneoubigher dimensions as well.
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APPENDIX: SYMMETRIES OF THE CURRENT ) —
IN THE DASEP FIG. 18. Invariance of the current und®~ R andp—1—p for

the DASEP in one dimension. Jump directions on every bond are
Consider applying the operatios(charge conjugation  reversed fromR to R. ConfigurationsC and C are related by
P (parity transformatioyy and T (time reversal to the AT
DASEP. UnderC, particles and holes are interchanged; un-
der P, forward and backward hopping rates on each bond ar
interchanged; under, the direction of current is reversed.
In this appendix we discuss two types of symmetry trans
formations in the DASEP that leave the steady-state current
mvanant. (i) The ﬂlrst is invariance unde(EPT. Under the Jo(p,RI=Wi(n;(1—n))), k= WI(n;(1-n))), g
simultaneous application of the three operations, the steady-
state weights of particle configurations and the current are
shown to remain invariantii) The second type of symmetry
is restricted to 1D systems in which only one-way jumps are _ _
allowed on each bond. The symmetry transformation con- ==Jo(1=p,R)=Jp(1-p,R). (A3)
sists ofC (or PT). In this case, we have convincing numeri-
cal evidence that the current is invariant, though there ap-  — . .
pears to be no simple relationship between steady-stat'élere‘]o denotes the time-reversed current and differs from

weights of various particle configurations. We have no genJo DY just a sign. L
eral proof of this result. _n the case of the FSNSec. IIl B the realizationd®R and

(i) Invariance under CPT. Consider the DASEP, withR are identicalapart from a global reflectionHence, in this
quenched disordered and unequal forward and backwarepse the above arguments imply that the magnitudes of the
hopping rates on each bond. Below we explicitly deal withcurrents at the two fillingg and 1-p are equal. The same
the one-dimensional case, but the results are easily generdpsult holds for the single-defect bond case studied by Jan-
izable to higher dimensions. L& denote a particular real- 0wsky and Lebowit411]. For the DASEP, with or without
ization of disorder and the realization obtained from by backbends, EqA3) has th? f:orollary that the disorder aver-
interchanging the forward and backward hopping rates o?9€d currents at the two fillings and 1-p are equal.

each bond, which is tantamount to flipping the easy direction  (il) Invariance under C or PT separatéfpr one dimen-
of jumps on all the bonds: IR is specified by the set of SIOM: forward hopping Above, we found that the magnitude

. i = — of the current is invariant when the filling is changed frpm
i 1]
tran§|t|on rates W'}, thenR correﬂ)onds to. the Séw to 1—p provided the disorder realization is changed frBm
=W!"}. Also, let us denote b¢ andC two particle configu-

rations related to each other by particle-hole interchanget0 R. Here we observébased on numerical evidendaat in

o . . one dimension, with only forward hopping, the result holds
(.Zlfaarly, if C is an allowed conﬁg.u.ratlon of the system at for realizationR on its own, i.e.,
filling p, thenC corresponds to a filling 4 p and thus there
is a one-to-one correspondence between the configurations at
the two fillings. Now letCl be the configuration obtained Jo(p,R)=Jo(1—p,R) (C invariancg.  (A4)
from C by exchanging the occupation numbers at the sites
andj. It is easy to see that the two transition ratég,(C

particle-hole interchange. So afd andCl.

Eurther, the steady-state currentsRrandR at the two fill-
ings are equal, provided we do a time rever3alas well:

=WI(nj(1=n) 1, k= WIN(1-n))1 R

ot HiE " In view of Eqg. (A3) this is equivalent to

—C") in realizationR andW;_ ,(C—C") in realizationR,

are equalFig. 18, i.e., the transition matriced/, and\W; _ — 1D ; ;

in the two realizations have identical entries. ’ Jo(p:R)=Jo(p,R) (P invariance. (AS)

Identification of the two)V matrices implies that the in-

variant measure®, and P;_, satisfy The claim is easily verified for the single-partidler single-
P P hole) case using an explicit form for the currendy
_ =(Zia; 1) "t [25]. Also, Eq.(A5) is true atp=1/2 since

Po(C)="P1-,(C). (Al)  Eq.(A4) is an identity at this filling.

We do not have a proof for Eq$A4) or (A5) in the
general case, but they seem to be borne out numerically. For
instance, we studied the validity of EGA5) for a system of
size L=6 with N=2 particles. We tookR to be the set
{Whitli=1,...,6={3,3,1,13,1}. The invariance of the
(N)pr=1—(N)1-,Rr- (A2)  current is verified up to 1 part in $0We also studied the

Using this, together with the identityi(C)=1—ni(E), we
can relaten-point correlations at fillingg and 1—p. In par-
ticular, the site densities at the two fillings are related as
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steady-state probabilities of all th&C, particle configura- two sets of steady-state weights. This suggests that there

tions for each oR andR, both by a Monte Carlo and by a should be a proof of the invariance of the current that does
Lanczos iteration of the stochastic evolution operator. Ther&ot rely on identifying the weights of individual configura-

seems to be no straightforward correspondence between ttiens [30].
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