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Driven lattice gases with quenched disorder: Exact results and different macroscopic regimes

Goutam Tripathy and Mustansir Barma
Department of Theoretical Physics, Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400 005, India

~Received 7 November 1997!

We study the effect of quenched spatial disorder on the current-carrying steady states of driven stochastic
systems of particles interacting through hard-core exclusion. Two sorts of models are studied: disordered
drop-push processes and their generalizations, and the disordered asymmetric simple exclusion process.
Quenched disorder enters through spatially random microscopic transition probabilities and the drive is mod-
eled by asymmetry in transition probabilities between sites. Exact steady-state measures are obtained for the
drop-push and the generalized drop-push dynamics ind dimensions for arbitrary disorder. This allows us to
compute closed form expressions for the steady-state current and site-dependent densities. The steady state of
the asymmetric exclusion process with disordered bond strengths is studied in one dimension by numerical
simulation and by a mean-field approximation that allows for density variations from site to site. In the totally
asymmetric case, we present strong numerical evidence that the current is invariant under reflection. We show
that disorder can induce phase separation into macroscopic regions of different densities. We propose approxi-
mations, supported by direct numerical simulations, to describe these phenomena and the phase diagram of the
model in the current-density plane in terms of macroscopic parameters of the model. We also study the effect
of making the direction of easy flow in each bond a random variable and find that the current decreases with
system size in this case. We conclude that there are three distinct regimes in disordered driven diffusive
systems in one dimension: ahomogeneousregime in which the state of the system is characterized by a single
macroscopic density and a nonzero current; asegregated-densityregime, where the state of the system is
characterized by two distinct phase-separated values of density and a nonzero current; avanishing-current
regime, where the state of the system is characterized by two distinct values of the density and the current
decreases as the system size increases and vanishes in the thermodynamic limit. Using a mapping from lattice
gases to interfaces, these regimes translate into distinct regimes of interface growth in the presence of columnar
disorder.@S1063-651X~98!06708-7#

PACS number~s!: 05.60.1w, 47.55.Mh, 64.60.2i, 05.50.1q
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I. INTRODUCTION

It is known that quenched disorder can strongly affect
large-scale, long-time behavior of nonequilibrium driv
systems with interacting constituents. The interplay of dis
der, interactions, and drive opens up the possibility of diff
ent regimes of complex and interesting behavior arising
these systems@1#. In the theoretical effort to delineate an
explore regimes of different behavior, an important role
played by simple models that capture some features of m
complex physical systems. In this paper we study disorde
driven diffusive systems by analyzing stochastically evo
ing lattice gas models, with quenched disordered hopp
rates@2#.

Driven diffusive systems in the absence of disorder h
been studied extensively and are reviewed in@3#. Also, sys-
tems with disorder and drive but no interactions betwe
particles are well studied and understood@4#. However, there
have been only sporadic studies of disordered driven di
sive systems of interacting particles. It has been argued
strong enough random site dilution can substantially aff
the transport properties of particles with hard-core inter
tions and can make the system respond nonmonotonical
the driving field@5,6#. On the other hand, a low concentr
tion of blocked sites was found numerically not to affect t
critical behavior of a driven lattice gas with additional attra
tive interparticle interactions@7#. Finally, a driven lattice gas
with a quenched noise distribution was studied using fie
PRE 581063-651X/98/58~2!/1911~16!/$15.00
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theoretic techniques in@8#, but the connection of this stud
with particle-conserving disordered lattice gas models is
clear.

In this paper we study disordered lattice gas models w
a view towards identifying different sorts of generic behav
that can arise on large scales as a consequence of diso
The only interaction included is the hard-core constra
which limits the allowed occupancy of each site. We obta
the exact steady state of the disordered drop-push proce
all dimensions in a system with disorder, interactions, a
drive @9#. We also study the disordered asymmetric exclus
process by numerical simulations and within a mean-fi
approximation.

In the remainder of this introduction, we discuss the d
ferent types of behavior displayed by the lattice gas mod
under study. We find three distinct regimes in disorde
driven diffusive systems in one dimension.

In the homogeneousregime, the state of the system
characterized by a single density and a nonzero curr
Quenched disorder induces variations of the density on
microscopic scale, of the order of a few lattice spacin
However, the system has a macroscopically homogene
density. In the thermodynamic limit, the current approach
a finite value.

In the segregated-densityregime, the state of the system
is characterized by two distinct values of density and a n
zero current. Besides microscopic-scale variations of
density, there are macroscopic regions with differing hi
1911 © 1998 The American Physical Society
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1912 PRE 58GOUTAM TRIPATHY AND MUSTANSIR BARMA
and low densities. The state is thus characterized by ph
separation of the density and a spatially constant tim
averaged current that remains finite in the thermodyna
limit.

In thevanishing-currentregime, the state of the system
characterized by two distinct values of the density and
essentially zero current. The hallmark of this regime is t
the current decreases as the system size increases and
ishes in the thermodynamic limit. This is a consequence
rare but rate-limiting backbends, or stretches of bonds
disfavor the forward flow of current. The density is inhom
geneous on a macroscopic scale.

The density profiles in typical states in each of the th
regimes are depicted in Fig. 1, while Fig. 2 shows the va
tion of the current with system size in the three cases.

Examples of these behaviors are discussed in this p
for two types of lattice gas models, namely, the disorde

FIG. 1. Representative steady-state density profiles for the~a!
homogeneous,~b! segregated-density, and~c! vanishing-current re-
gimes in the disordered asymmetric exclusion process.

FIG. 2. Variation of the steady-state current with the system s
for the three DASEP regimes of Fig. 1:~a! homogeneous~circles!,
~b! segregated-density~triangles!, and ~c! vanishing-current
~squares!. In ~a! and~b! the current approaches a finite value in t
thermodynamic limit, whereas in~c! the current vanishes as
power of the system size. The dashed line corresponds tJ
50.125, which is the limiting value of the current in regime~b! for
the chosen values of the parameters.
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drop-push process~DDPP! and the disordered asymmetr
simple exclusion process~DASEP!. The models are defined
in detail in Secs. II and III, respectively, but for the purpo
of discussion here, it suffices to note that the models
similar in that there is a maximum occupancy of each site
both and are different in the dynamical moves: attemp
nearest-neighbor jumps in the DASEP and slightly long
ranged leapfrogging moves in the DDPP.

The absence of detailed balance, together with the bre
ing of translational invariance, in disordered off-equilibriu
systems makes the characterization of even the statio
state difficult in general. It is shown that the steady state
the disordered drop-push process can be found explic
This determination, which is based on the condition of pa
wise balance@10#, shows that a product measure form
valid in all dimensions. The form reflects the microscop
inhomogeneities coming from the underlying disorder a
results in a macroscopically homogeneous state.

For the disordered asymmetric exclusion process,
steady-state measure is not analytically characterizable
we study the problem within a sitewise inhomogeneo
mean-field theory and by numerical simulation. The res
depends crucially on whether or not the system has ba
bends, which are stretches of the lattice where the local
is against the particle flow. In the no-backbend case, w
the average particle density is sufficiently away from 1/2,
spatial profile of the density has microscopic shocks, bu
uniform on macroscopic scales@Fig. 1~a!#. However, in a
finite region around half filling, disorder induces phase se
ration into macroscopic regions of high and low density@Fig.
1~b!#. We give approximate arguments to understand the
gin and nature of this phase separation and to obtain the f
of the phase diagram in the current-density plane. This
of behavior has also been seen earlier in a model wit
single weak bond@11#. We argue that disorder-induced pha
separation is a generic feature of systems in which the
rent J versus densityr shows a maximum at some interm
diate density, in the absence of disorder.

We noticed an intriguing symmetry of the current in th
totally asymmetric DASEP. A typical configuration o
quenched disorder is not symmetric under reflection, no
the steady state. Despite this, we find that the current is
variant, up to a sign, under reflection. Strong support for t
unexpected invariance is obtained from numerical studie

In the version of the DASEP in which the easy directi
of hopping is itself a quenched random variable, the mo
represents a system of hard-core particles in a random po
tial with an overall downward tilt, but with backbends o
arbitrary length. Long backbends severely limit the ma
mum current that can flow through the system and in fact
current decreases to zero as the system size increases~Fig.
2!; the system is in the vanishing-current regime.

Although our emphasis in this paper is on the analysis
lattice models, we comment briefly on certain constrai
that are important in a continuum description. Such a
scription is expected to be valid for the large-scale, long-ti
behavior and is based on stochastic differential equations
volving appropriate coarse-grained variables. It is argu
that quenched randomness is manifest in random multipl
tive coefficients in a gradient expansion. Conservation
particle number, which implies spatial constancy of the c
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PRE 58 1913DRIVEN LATTICE GASES WITH QUENCHED . . .
rent in the steady state, imposes strong constraints on t
terms.

In one dimension, using a well known mapping@12#, the
particle models are equivalent to stochastic growth model
a one-dimensional~1D! interface moving in a 2D medium
The interface moves with a speed proportional to the cur
in the particle model. The disordered jump rates now beco
local growth rates, which are disordered in a columnar fa
ion for the moving interface@13#. The three principal re-
gimes of behavior discussed above for the particle mod
translate into distinct regimes for interface motion, name
~i! a moving interface with normal roughness,~ii ! a moving
interface with large segments with different mean slopes,
~iii ! an interface with different-slope segments, which is s
tionary in the thermodynamic limit.

The paper is organized as follows. In Sec. II we defi
and discuss the steady-state properties of the disord
drop-push process in arbitrary dimensionality. The dis
dered asymmetric exclusion process with only forward-ea
direction hopping but quenched random rates is discusse
Sec. III; the invariance of the current under reflection is d
cussed in the Appendix. The case in which there are so
backward-easy-direction bonds is discussed in Sec. IV
Sec. V we discuss the constraints on a continuum desc
tion, while Sec. VI discusses the implications of our resu
for models interface growth in the presence of columnar d
order. Section VII is the conclusion.

II. DISORDERED DROP-PUSH PROCESS

The drop-push process was initially introduced in@6,10#
as a model of activated flow involving transport through
series of traps of equal depths. The dynamics consist
activated hops together with a cascade of overflows follo
ing each move. The disordered version of the model may
considered as a discrete model of activated fluid flow do
an inclined rugged slope with lakes of varying depths;
Figs. 3 and 4. This is similar to the above-threshold beha
of the model considered in@14#. In this section we show tha
the steady state and current can be found exactly in all
mensions for the DDPP and its generalizations.

A. Model

The model ind dimensions is defined on a hypercub
lattice with periodic boundary conditions along all thed axes

FIG. 3. Schematic diagram of water flowing down a rugg
hillside. Water from a lake higher up cascades downhill, under
action of gravity, until it finds a partially filled lake. The unequ
capacities of the lakes are the quenched variables in the syste
se
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~with unit vectors$nun51, . . . ,d%). At each siter is a well
that can hold at mostl r particles~Figs. 4 and 5! with l r ’s
chosen independently from some probability distributi
P( l ). The configurationC of the system is specified by spec
fying the set of occupation numbers$nr% with 0<nr
< l r ;r . Further, assigned to each siter is a set
$e(nr u l r);nr51, . . . ,l r% of positive random numbers chose
from some given distribution@15#. The dynamics is stochas
tic. In a time intervaldt, with a probabilityp6ne(nr u l r)dt,
the topmost particle in the wellr hops out and drops into a
well r 6ên , i.e., into the adjacent well in the6nth direction.
Here$p6n ;n51, . . . ,d% is a set of site-independent positiv
numbers satisfying(n51

d (pn1p2n)51. Now, if the well r
6ên is already full, then the particle gets pushed furth
preserving the direction of the initial jumpto the next site
and so on. The cascade of transfers terminates once a
tially full well is encountered. Note that here the set of jum
rates$e(nr u l r)% is site dependent as well as a function of t
occupation numbers. These rates, together with the w
depths$ l r%, constitute the quenched random variables in
model. The set of probabilities$p6n% determines the direc
tion of the global biasEW 5(n51

d (pn2p2n)ên and, as will be
shown in Sec. II B, also the direction and magnitude of
steady state current in the model. However, the probabili
do not enter the expression for the normalized invariant m
sure. Though all the results we will discuss hold for a
arbitrary choice of thee ’s, in a physical system they shoul
be determined from the details of the trapping mechanis
etc., e.g., they may be taken to be of the Kramers fo
e(nr u l r)}exp@2g(lr2nr)# for situations where the jumps ar
activated@16#.

B. Invariant measure

The time evolution of the probabilityP(C) for the system
to be in configurationC is given by the master equation@17#

e

.

FIG. 4. Disordered drop-push process configuration and mov
d51.

FIG. 5. DDPP model ind52. The model can be generalized
d.2 ~see the text!. The ratese(nr u l r) depend on the well depthl r

as well as the occupation numbernr .
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d

dt
P~C!5(

C 9
W~C 9→C!P~C9!2(

C 8
W~C→C 8!P~C!.

~1!

Here theW’s are the transition matrix elements identifie
with the ratese defined in the model; e.g., if the transitio
C→C 8 involves moving the topmost of thenr particles atr
to r 8 along thenth direction, thenW(C→C 8)5pne r(nr u l r).
The steady state or the invariant measure of the dynamic
the set of time-independent weights$m(C)% satisfying Eq.
~1! above. Hence the problem of finding the invariant me
sure reduces to that of finding a set of positive weig
$m(C)% such that the total incoming flux into any configur
tion C @the first sum in Eq.~1!# equals the total flux out ofC
@the second sum in Eq.~1!#. The uniqueness of the invarian
measure is ensured by the connectedness property of thW
matrix, i.e., every configuration can be reached from a
other by a sequence of transitions@17#.

We claim that the~unnormalized! measure of configura
tion C($nr%) in the steady state has the product form

m~C!5)
r

ur~nr !. ~2!

Hereur are the single-site weights defined as

ur~nr !5H 1 if nr50

t r~1!, . . . ,t r~nr ! if 0 ,nr< l r ,
~3!

where t r(nr)5e0 /e(nr u l r), with e0 being a microscopic
rate.

To show that Eq.~2! is indeed the invariant measure fo
the DDPP we show that it is possible to associate config
tion C 9 in a one-to-one correspondence with everyC 8 ob-
tained fromC by an elementary transition such that

W~C→C 8!m~C!5W~C 9→C!m~C 9!. ~4!

The above is the condition ofpairwise balance@10#, which
ensures cancellation of terms corresponding to pairs of t
sitions, one from each sum on the right-hand side of Eq.~1!.
Pairwise balance has been used earlier to find the ste
states of translationally invariant systems@10,18#. We now
see that it can be used effectively to deduce the steady
of a disordered system as well.

Suppose that the transitionC→C 8 involves hopping a par-
ticle at siter to a siter 85r 1Dr 8ên with all the wells in
between along thenth axis full ~Fig. 6!. Then identify r9

such that the wellr 95r 2Dr 9ên is not full but all wells
betweenr 9 and r are full. The configurationC 9 is con-
structed such that it is identical toC at all sites except at site
r 9 andr , at whichnr 9

9 5nr 911 andnr95nr21. With C 9 thus
defined, the pairwise balance condition~4!

e~nr u l r !)
r

ur~nr !5e~nr 9
9 u l r 9!)

r
ur~nr9! ~5!

reduces to

e~nr u l r !ur 9~nr 9!ur~nr !5e~nr 9
9 u l r 9!ur 9~nr 9

9 !ur~nr9! ~6!
is

-
s

y

a-

n-

dy

ate

sinceC andC 9 differ only at the sitesr 9 and r . As can be
explicitly checked, condition~6! is satisfied in view of the
form of the weightsur(nr). The prescription above ensures
one-to-one correspondence between configurationsC 9 and
C→C 8 transitions.

In the limit of largeL we use the grand canonical descri
tion and write the normalized probability of configurationC
in the steady state as

P~C!5
zNPm~C!

)
r

Zr

, ~7!

where the site generating functions are given by

Zr5 (
nr50

l r

ur~nr !z
nr ~8!

andNp is the number of particles in the configuration. He
z is the fugacity and will be shown to be directly related
the steady-state current. The mean particle density at siter is
given as^nr&5z] ln Zr /]z @19#. Thus the fugacityz is re-
lated to the mean particle densityr of the system through

r5
1

Ld(
r

^nr&5
z

V(
r

] ln Zr

]z
. ~9!

The steady state is characterized by a spatially uniformz but
inhomogeneous site densities.

C. Steady-state current

For simplicity of presentation, we first derive a close
form expression for the steady-state currentJ0 for the 1D
fully asymmetric model. Then we use these results to w
down the current for the generald-dimensional case.

~i! d51, with forward jumps. In this case, for notation
convenience, we replace the lattice site indexr by a single
integer indexi . Further, we allow jumps only in one direc
tion (n51:p15p,p2150). For an infinite system we write
the currentJi ,i 11 in the bond (i ,i 11) as

FIG. 6. Construction of configurations satisfying the pairwi
balance condition ind51.
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Ji ,i 115(
j , i

(
nj 51

l j

pe~nj u l j !Pj~nj ! )
j ,k< i

Pk~ l k!

1 (
ni51

l i

pe~ni u l i !Pi~ni ! ~10!

where

Pi~ni !5ui~ni !z
ni/Zi ~11!

is the probability that sitei has occupancyni . Note that the
product form of the measure~2! has been exploited to write
the above expression with decoupled joint probabilities.

It is cumbersome and not very instructive to perform t
sum in Eq.~10! to obtain the current in a closed form. In
stead we use the spatial constancy of the current in the st
state to arrive at the result. We note that in the above exp
sion the first term represents the contribution of jumps or
nating from sitej to the left of sitei with all sites in between
full. The second sum represents jumps from the sitei itself
contributing toJi ,i 11. The first sum may be rewritten as

Pi~ni !F (
j , i 21

(
nj 51

l j

e~nj u l j !Pj~nj ! )
j ,k< i 21

Pk~ l k!

1 (
ni 2151

l i 21

e~ni 21u l i 21!Pi 21~ni 21!G .

The quantity within square brackets is immediately rec
nized to beJi 21,i by comparing it with Eq.~10!. Physically,
this means that of all jumps contributing toJi 21,i , those for
which site i is completely full also contribute toJi ,i 11.
Hence we have the recursion

Ji ,i 115Pi~ l i !Ji 21,i1 (
ni51

l i

pe~ni u l i !Pi~ni ! ~12!

relatingJi ,i 11 to Ji 21,i . Now, since$Pi(ni)% are the steady-
state site probabilities and since in the steady state all
bond currents must be equal~i.e., Ji ,i 115Ji 21,i5•••5J0),
from Eq. ~12! we obtain

J05

(
ni51

l i

e~ni u l i !Pi~ni !

12Pi~ l i !
5pe0z ~13!

where Eqs.~2! and ~11! have been used in the second st
above.

Note that the steady-state current does not depend u
the detailed spatial arrangement of wells. It is only a fun
tion, through the fugacityz, of the density and the total num
ber of wells of different types in a particular realization
disorder.

~ii ! d51, with jumps in both directions. We can write th
currentJi ,i 11 in bond (i ,i 11) as the difference between th
current Ji ,i 11

r due to the rightward jumps and the curre
Ji ,i 11

l due to the leftward jumps. This can be done since
each cascade the direction of the initial jump is preserv
dy
s-

i-

-

e

on
-

n
d.

Now we use the result for the fully asymmetric case abo
for each of these currents separately to obtainJi ,i 115J0
5(p12p21)e0z.

~iii ! d.1. To generalize the above results tod.1 we
note that for the DDPP ind.1, the invariant measure~2! is
the same as if we were to single out a particular directi
say n, and allow jumps only along that direction. Togeth
with the direction preservation of individual jumps, this a
lows us to write the expression for the current in any dime
sion:

JW05F (
n51

d

~pn2p2n!ênGe0z5e0zEW , ~14!

whereEW [(n51
d (pn2p2n)ên is the external drive. As in the

d51 case, the magnitude and the direction of the stea
state current do not depend upon the detailed arrangem
of the wells.

D. Static two-point correlation functions

Because of the product form of the measure, the c
nected part of the equal-time density-density correlat
function

Gr~Dr !5^nrnr 1Dr&2^nr&^nr 1Dr& ~15!

vanishes identically forDrÞ0. Consequently, the fluctuatio
of the number of particles inr consecutive sites along
straight line can be computed exactly:

G i
2~r !5K F (

j 5 i 11

i 1r

~nj2^nj&!G2L 5 (
j 5 i 11

i 1r S z
]

]zD
2

ln Zj .

~16!

The second step follows from the product form of the me
sure.

For d51, a standard mapping discussed in Sec. VI int
duces height variables defined by

hi5(
j < i

2~^nj&2nj !. ~17!

Evidently, G i
2(r ) is the equal-time height-height correlatio

^(hi 1r2hi)
2&. Averaging over the disorder distribution give

G 2̄(r );r , implying that the ‘‘roughness’’ exponenta @de-

fined byG 2̄(r );r 2a# is 1/2.

E. Two-rate DDPP model: Explicit results

Let us consider a drop-push model where the maxim
occupancy of each site is restricted to one, i.e.,l r51 ;r ,
but the hopping ratese r(1) are disordered and chosen ind
pendently from the binary distribution

Prob~x5ea!512 f , Prob~x5eb!5 f . ~18!

This model has the essential ingredients of disorder pre
in the original DDPP, yet it is simple enough that explic
closed form relations between the mean densityr and fugac-
ity z, and hence the steady-state currentJ0

W , can be written
down.
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Let us denote byZa andZb the site generating function
for thea and theb sites, respectively. Using Eqs.~8! and~2!,
these are given byZa511e0z/ea and Zb511e0z/eb .
Now, since the fractions ofa and b sites are 12 f and f ,
respectively, Eq.~9! reduces to

r5~12 f !
e0z

ea1e0z
1 f

e0z

eb1e0z
. ~19!

This can be easily inverted to obtainz as a function ofr,
e.g., for f 51/2 andea5e05eb /q we obtain

z~r!5
A~12q!2~1/22r!21q2~11q!~1/22r!

2~12r!
.

~20!

Sincez(r) is known, the steady-state current is trivially o
tained from Eq.~14!. Finally, the correlation functionG i

2(r )
of Eq. ~16!, upon disorder averaging, may be written as

G 2̄~r !5r S z
]

]zD
2

@~12 f !ln Za1 f ln Zb#

5
1

2F z

~11z!2 1
qz

~q1z!2G r , ~21!

wherez is given by Eq.~20! above.

F. Generalized disordered drop-push process

We may consider a generalized version of the disorde
drop-push process in which, in addition to the partic
moves, independent hole moves are also allowed. For
plicity we restrict ourselves to the generalized version of
single-occupancy DDPP introduced above. This general
model~GDDP! may be regarded as the disordered lattice
analog of the Toom interface dynamics in the low-noise lim
@20#; see Sec. VI. The techniques developed for the DD
may be used to obtain the exact steady-state measure
other quantities such as current and static correlations
vided a certain condition@~22! below# is met.

The model ind dimensions is defined on a hypercub
lattice with periodic boundary conditions along all thed axes
~with unit vectors$ênun51, . . . ,d%), similar to the DDPP.
Each siter of the lattice can hold either a particle (nr51) or
a hole (nr50). The configurationC of the system is speci
fied by specifying the occupation number of each well$nr%
with (nrP$0,1% ;r ). Further, assigned to each siter is a
pair of positive random numbers (a r ,b r) chosen from some
distribution. The dynamics is stochastic and is very simila
that for the DDPP dynamics: In a time intervaldt, a particle
at site r is exchanged with the closest hole in the6nth
direction with a probabilityp6na rdt ~Fig. 7!. For identical
particles this move is equivalent to a cascade of part
moves terminating at the first vacant site as in the drop-p
dynamics. Likewise, in an intervaldt, a hole at siter is
exchanged with the closest particle along thenth direction
with probability qnb rdt. This can be looked upon as a ca
cade of hole moves analogous to the cascade of par
moves. Here, as in the DDPP, thepn’s andqn’s are all non-
negative and satisfy(n51

d (an1a2n)51 (a5p,q). Further
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we chosea ’s andb ’s such that

a rb r5K, ~22!

where K is a constant independent ofr . As we will see
below, this particular choice of the jump rates allows t
exact determination of the invariant measure of the mod
Physically this choice is quite reasonable since it implies t
the sites that act as traps for particles~low a r) are more
transparent to holes~high b r) and vice versa. As pointed ou
earlier, the nondisordered version of this model, i.e.,$a r
5a,b r5b ;r % in one dimension, is the lattice gas equiv
lent of the low-noise driven Toom interface dynamics@20#.

The master equation~1! governing the time evolution o
the system now includes terms corresponding to hole mo
as well. Since each microstep involves either only parti
moves or hole moves, we use the principle of pairwise b
ance for the particle moves and hole moves separately.
work in the grand canonical picture in the thermodynam
limit.

If only particle moves were allowed the invariant measu
would be given by

mpart~C!5)
r

ur~nr !. ~23!

The single-site weightsur are given by

ur~nr !5H 1 if nr50

e0 /a r if nr51.
~24!

Introducing the fugacityz and site generating functionsZr
511zur(1), we canwrite the normalized single site prob
abilities asPr

part(0)51/Zr andPr
part(1)5zur(1)/Zr .

Similarly, with only the hole moves, the invariant me
sure has the product form

mhole~C!5)
r

v r~nr !, ~25!

FIG. 7. GDDP configuration and moves ind52.
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wherenr51 ~0! refers to the presence~absence! of a hole.
The single site weightsv r are given by

v r~nr !5H 1 if nr50

e0 /b r if nr51.
~26!

Introducing the fugacityy for holes and site generating func
tions Yr511yv r(1), we canwrite the normalized single
site probabilities as Pr

hole(0)51/Yr and Pr
hole(1)

5yv r(1)/Yr .
Now, since each site is occupied either by a particle o

hole, we must havePr
part(0)5Pr

hole(1) and Pr
part(1)

5Pr
hole(0). Using the detailed forms ofPr

part’s andPr
hole’s,

we arrive at the condition~22! with K[e0
2yz. If this condi-

tion is satisfied then the invariant measure for the GDDP
given by either Eq.~23! or Eq. ~25!, since both are equiva
lent.

In a similar manner as for the DDPP the current due to
particle moves and hole moves may be computed. The t
particle current due to both types of moves, ind dimensions,
is given by

J0
W5e0z(

n51

d

~pn2p2n!ên2e0y(
n51

d

~qn2q2n!ên .

~27!

As for the DDPP, static density-density correlations in t
steady state vanish identically on account of the prod
form of the steady-state measure. Ind51 the height-height
correlation is given by Eq.~16!.

III. DISORDERED ASYMMETRIC SIMPLE EXCLUSION
PROCESS

The asymmetric simple exclusion process is a prototy
cal model for studying nonequilibrium phenomena in t
context of lattice gases@21,22#. When discussing the effec
of quenched disorder, it is important to distinguish betwe
cases in which~a! the easy direction of hopping in each bon
is the same but hopping rates are random and~b! the easy
direction is itself a random variable. The latter case is stud
in Sec. IV. In this section, we consider a 1D system w
disorder of type~a! and show that quenched disorder c
induce macroscopic phase separation. Using a variety o
guments, we sketch the phase coexistence curve in the
rent (J) –mean density (r) plane. This agrees qualitativel
with the results obtained from the Monte Carlo~MC! simu-
lations.

A. Model

In one dimension, we define the disordered asymme
simple exclusion process on a ring ofL sites. Each site can
hold either one or zero particles. Assigned to each b
( i ,i 11) of the lattice is a quenched random ratea i ,i 11 cho-
sen independently from some probability distributi
Prob(a). The dynamics is stochastic: In a time intervaldt a
particle at sitei attempts to hop, with probabilitypa i ,i 11dt,
to sitei 11. The move is completed if and only if sitei 11 is
unoccupied~see Fig. 8!.
a

is

e
tal

e
ct

i-

n

d

r-
ur-

ic

d

For the model defined above no analytically exact char
terization of the steady-state measure could be obtained.
difficulty can be traced to the fact that actual completion o
jump depends not only on the originating site~through the
attempt rate! but also on the particular configuration. This
in contrast to the drop-push models of earlier sections, wh
an attempted jump is always completed. A simpler aymm
ric exclusion model in which there is only one defect bo
has been studied in detail by Janowsky and Lebowitz@11#,
but in this case too the exact steady-state measure is
known. We use Monte Carlo simulations and a mean-fi
approximation to demonstrate some striking effects
quenched disorder.

B. Current-density plot and density profile in steady state

Figure 9 shows the steady-state currentJ vs mean density
r plot, obtained from MC simulations, for a system of si
L58000 and the ratesa chosen from the binary distribution

Prob~a5r !5 f , Prob~a51!512 f . ~28!

Here f is the fraction of weak bonds andr is a measure of
the strength of the weak bonds. We used the valuesr 51/2
and f 51/2 in our numerical work. For a specified mean de
sity r, a random initial distribution ofNp5rL particles onL
sites is chosen and the system is allowed to settle int
steady state by evolving it for a sufficiently large number
MC steps. Then the current across each bond is obtaine
counting the total number of jumps across that bond, ove

FIG. 8. Disordered fully asymmetric simple exclusion proce
and moves ind51.

FIG. 9. Current-density plot for the DASEP for a given realiz
tion of disorder for a system of sizeL58000. The hopping rates ar
chosen from the distribution~28! with r 5 f 51/2. The filled circles
are the MC results and the dashed line is the mean-field curve.
solid line represents theJ-r curve for the fully segregated mode
for the same values of the parameters.
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large number of MC steps. An average of all the bond c
rents thus computed is taken asJ0, as currents across a
bonds are equal in the steady state.J0 is a symmetric func-
tion of density aroundr51/2 as a result of a certain sym
metry with respect to particle-hole interchange~see the Ap-
pendix!. As may be expected, the current for the disorde
system lies between the corresponding values of the two
reference systems withr 51 and r 51/2 on all the bonds.
The more striking qualitative difference between the dis
dered and pure systems is the appearance of a plateau~re-
gime B in Fig. 9! for a range of densitiesur21/2u<D. In
this regime, the current is independent of the mean den
and equals the maximum allowed current in the system.
approximate sizeD of regimeB, which is a function ofr and
f , is obtained in Sec. III E below.

We studied the steady-state density profiles character
by the set of site densities$r i[^ni&% in both regimesA and
B, using MC simulations. We found that in regimeA the
system is homogeneous on a macroscopic scale, whil
regimeB it shows macroscopic density segregation. Fig
10 shows the steady-state density profiles for three repre
tative mean densities, one from regimeA and two from re-
gime B. Evidently, there is a large qualitative difference b
tween the profiles in the two regimes. In regimeA @Fig.
10~a!#, there are density variations~shocks! only over micro-
scopic scales; coarse graining over a few lattice spac
leads to a spatially uniform density. In contrast to this, in
profiles corresponding to regimeB @Fig. 10~b!#, there are
density inhomogeneities over length scales comparable to
system sizeL, in addition to the shocks on a microscop
scale. This segregation into high- and low-density pha
with large shocks separating them, is reminiscent of ph
separation and occurs over the full range of mean part

FIG. 10. Density profiles for the DASEP for a system of si
L58000 for a given realization of disorder at three fillings:~a! r
50.8, ~b! r50.6, and~c! r50.5. Shown in~d!, ~e!, and~f! are the
blowups of the regions enclosed in the dashed boxes in~a!, ~b!, and
~c!, respectively. Circles are MC profiles and the continuous li
are mean-field results.
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densities corresponding to regimeB. A qualitatively similar
phenomenon has been found in a system with one de
bond, studied in@11#.

The numberof different large-scale regions of high- an
low-density shows fluctuations from one realization of dis
der to another. As the size of the system is increased,
monitored the mean number of these regions and found
it is nearly constant or perhaps increases very mildly, c
tainly much slower than linearly in the size of the syste
This implies that the characteristic length scale of dens
segregation increases indefinitely in the thermodyna
limit.

C. Mean-field approximation

We now turn to a mean-field approximation, which a
sumes no correlations between site densities in the ste
state. We will see that it captures most of the steady-s
features found in the MC simulations above, including t
steady-state density profile.

The time-averaged steady-state currentJi ,i 11 in the bond
( i ,i 11) is given byJi ,i 115a i ,i 11^ni(12ni 11)&. In view of
the mean-field approximation̂ninj&5^ni&^nj& this reduces
to

Ji ,i 115a i ,i 11^ni&^12ni 11&. ~29!

To compute the steady-state currentJ as a function of the
mean particle densityr for a given realization of disorder
we use the two iteration schemes described below, wh
yield equivalent results.

~i! Constant current iteration scheme. For a given sys
of size L and for a fixed valueJ5J0 for the current, we
iterate the set of equations

r i 11512J0 /a i ,i 11r i , i 51, . . . ,L, ~30!

around the chain starting with, say, some valuer1 ~periodic
boundary conditions implyr i 1L5r i). If J0 is less than a
certain valueJmax

MF , which is the maximum current supporte
by the system within the mean-field approximation, then
iteration scheme converges, i.e., we get all the site dens
in the physically acceptable range@0,1#. The average of
these site densities gives the mean density of the sys
corresponding to the stationary currentJ0. There are in gen-
eral two values of the mean particle density correspondin
an allowed value ofJ0 and the iteration scheme converges
one or the other depending on the initial value of the den
r1.

However, in this scheme we find that the number of ite
tions required for convergence increases without bound
the trial valueJ0 gets closer toJmax

MF from below. This diver-
gence of the iteration scheme is presumably due to the e
tence of the plateau in theJ vs r curve, i.e., there exist man
values ofr for J0 very close toJmax

MF . Hence to obtain the
density profile forr in the density segregated regime w
resort to theconstant densityiteration scheme described be
low.

~ii ! Constant density iteration scheme. In this scheme
begin by assigning site densities$0<r i(0)<1% to the lattice
sites subjected to the constraint (1/L)( ir i(0)5r. The site
densities are updated in parallel according to

s



e
i.e
,

ng
It

y
he

ng
t
th

e
i
a

ta
um
a
e

ita
,
s
in
ub

.
-

con-
ec-

n

he

in
has
ean
nt
ally

ex-

est
of

n of
i-
of

ove
nd-

n in
del
m
ed
ase
st of
the
he

g-

ed

the
t-

is
on-
, we
ver-
y a
ity.

p-
ally

by
ne

wo

PRE 58 1919DRIVEN LATTICE GASES WITH QUENCHED . . .
r i~ t11!5r i~ t !1Ji 21,i~ t !2Ji ,i 11~ t !, i 51, . . . ,L,
~31!

where Ji ,i 11(t)5a i ,i 11r i(t)@12r i 11(t)# in view of Eq.
~29!.

We refer to this as the constant density scheme, sinc
each iteration the total density remains unchanged,
( ir i(t11)5( ir i(t). After a sufficient number of iterations
which depends upon the starting mean densityr, the set of
site densities converge to a set of numbers$r i% and the cur-
rent on each bond converges to the steady state currentJ0.

The steady-state density profiles and theJ vs r plot (0
<r<1) for a given configuration of disorder obtained usi
these schemes is shown in Figs. 10 and 9, respectively.
evident that the mean-field approximation~29! reproduces
quite well not only theJ-r relationship, but also the densit
profile, including the locations of shocks, though not t
shapes of individual shocks.

D. Qualitative explanation of phase separation

Although the mean-field approximation of the precedi
subsection successfully reproduces many features in
steady state, it does not yield a simple understanding of
phase separation~Fig. 10! or the plateau in theJ-r curve
~Fig. 9! in terms of the macroscopic parameters of the mod
We conjecture that underlying the behavior of the DASEP
different regimes is a maximum-current principle: For
given mean density, the system settles into a steady s
which maximizes the stationary current. Such a maxim
current principle has been used to describe phase separ
in the asymmetric simple exclusion process with op
boundary conditions by Krug@23#.

To use the maximum-current principle to have a qual
tive understanding of the phase separation in the DASEP
us assume that the density in each stretch of like bond
uniform. This approximation is in fact essentially exact
the fully segregated model discussed in the following s
section. Let us denote stretches ofa51 bonds byX and
stretches ofa5r ,1 bonds byY. The two parabolas in Fig
11 are the steady-stateJ vs r curves for the two pure refer

FIG. 11. Origin of phase separation in the DASEP. The t
parabolasJ5rr(12r) (r 51,1/2) represent theJ-r plots for the
two reference nondisordered systems.
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ence systems, consisting of allX and allY. In the disordered
system, since the steady-state current has to be spatially
stant, the possible densities are given by the four inters
tions of the lineJ5J0 with the two parabolas. If the mea
density is in the ranger<1/22D ~or r>1/21D), then the
allowed densities for theX and Y stretches arer1 ,r2 ~or
r4 ,r3), respectively. The current is in fact determined by t
density constraint (12 f )r1,4(J0)1 f r2,3(J0)5r. The varia-
tion of density betweenr1 andr2 ~or r3 andr4) between the
X and Y stretches corresponds to the ‘‘subbands’’ seen
Fig. 10~a!. On a macroscopic scale, however, the system
uniform density. Now consider what happens when the m
density is brought closer to 1/2. From Fig. 11 it is evide
that the current would tend to increase and would eventu
reach the maximum allowed valueJmax

Y ~which equalsr/4 in
the thermodynamic limit, as argued below!. As the density is
increased further, the current remains constant atJmax

Y , in
accordance with the maximum current principle, and the
cess density is taken care of by converting some of theX
stretches of densityr1 into ones withr4 ~or vice versa ifr
.1/2). This conversion takes place adjacent to the larg
stretch ofY bonds, leading to two macroscopic regions
different mean densities, one with densitiesr1 ,r2 for the X
andY stretches and the other withr4 ,r3. The position of the
principal shock separating these regions is at the locatio
the largestY stretch. In the DASEP, the assumption of un
form density in each stretch is not really true, on account
the finite length of most of the stretches. However, the ab
argument provides a qualitative picture towards understa
ing the reason for phase separation in the DASEP.

In a certain respect, the reason for the phase separatio
the DASEP is similar to that in the single-defect bond mo
studied in @11#: Both have local segments in the syste
where the maximum allowed current is less than that allow
everywhere else. In the single-defect bond model, ph
separation takes place when the current carried by the re
the system, with presumed uniform density, is larger than
maximum current allowed through the weak bond. In t
DASEP, with an extensive number of weak bonds, thelarg-
est stretchof weak bonds acts as the current-limiting se
ment. The length of this stretch increases as lnL with system
size and in the thermodynamic limit the maximum allow
current in this stretch isr /4, equal to the maximal current in
a pure system with only weak bonds.

The essential point leading to phase separation is thus
maximum-current principle, coupled with localized curren
limiting regions in the system. In the DASEP, this limit
determined by long stretches of weak bonds and similar c
siderations should apply in related models. Consequently
would expect a density-segregated phase in disordered
sions of models that, in the absence of disorder, displa
maximum in the steady-state current as a function of dens

E. Fully segregated model

It is useful to define a model for which many of the a
proximations made in the preceding subsection are actu
exact. To this end, we study a fully segregated model~FSM!,
which is obtained from the binary random model above
arranging all like bonds together. Thus, in this model, o
hastwo large stretches ofX andY, of lengths (12 f )L and
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f L, respectively. For the FSM in the thermodynamic lim
the assumption of uniform density within each stretch is j
tified, as correlations due to the junctions decay with incre
ing separation, and may be neglected in the bulk@24#.

Steady-state MC density profiles for the FSM at thr
different fillings r<1/2 are shown in Fig. 12: Symmetr
under particle-hole exchange implies analogous behavior
r>1/2 ~Appendix!. For low densities (r,rc

2), the two
stretches have uniform bulk densitiesrx and ry related to
each other by the requirement of equality of the two b
currents

rx~12rx!5rry~12ry!5J0 ~32!

and the density constraint

~12 f !rx1 f ry5r. ~33!

These three equations determinerx , ry , andJ0 uniquely for
a givenr. For f 51/2 we obtain

ry5
4r212r 6A~4r212r !218~12r !r~122r!

2~12r !
,

rx52r2ry , J05rx~12rx!. ~34!

This is analogous to the macroscopically homogeneous s
of the fully random system.

As the mean density is increased, the density of e
stretch increases, until, at a critical densityr5rc

25 1
2

2 1
4 A12r ~the corresponding critical density on the high

side isrc
1512rc

2), ry equals 1/2~Fig. 12!. At this density,
the current equals the maximum possible current inY,
namely,J05Jmax5r /4. As r is increased further,ry andJ0
remain constant at 1/2 andr /4, respectively. The densit
change is adjusted by creating a density inhomogeneit
stretchX. The two densitiesrx

high and rx
low are related by

rx
high1rx

low51 so that the currents in the two phases
equal, i.e.,rx

high(12rx
high)5rx

low(12rx
low)5r /4. This im-

pliesrx
high,low5(16A12r )/2 ~see the inset in Fig. 12!. The

fraction of these phases can be determined from a lever

FIG. 12. Representative density profiles of the FSM withr 5 f
51/2 at three different fillings:~a! r50.24 ~dotted!, ~b! r5rc

2

50.324~solid!, and~c! r50.4 ~dashed!. TheY stretch (r 51/2) is
in the rangei P@2000,6000#. The inset shows the variation of th
bulk densities in theX andY stretches as a function of the fillingr.
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and are given byf high,low5ur2rc
7u/(rx

high2rx
low). This

locking of the density in theY stretch atry51/2 is a direct
consequence of the maximum current principle introduc
above: Any change ofry from 1/2 would reduce the curren
in Y and hence in the full system. All the arguments abo
can be applied forr.1/2 because of particle-hole symmetr
Thus, for rc

2,r,rc
1 the state of the segregated model

analogous to the phase separated regimeB of the random
model. The size of regimeB in the FSM is given by 2D
5rc

12rc
25A12r /2. It closely approximates the size of th

B regime in the DASEP~Fig. 9!.

F. Phase-coexistence curve

For the FSM, asr is varied we obtain differentJ0 vs r
curves. The phase-coexistence curve in the current-den
plane in the parametric form

Jc5
r

4
, rc5

1

2
6

1

4
A12r , ~35!

which is the parabolaJc51/42(122rc)
2 in Fig. 13.

The difference between the phase boundaries of
DASEP and FSM~Fig. 13! comes from the fact that the
interspersed weak-bond stretches in the DASEP have fi
lengths and the density in these small stretches is not q
equal to 1/2. Close to the phase separation, we anticipate
mean density in aY stretch of lengthl in the DASEP to be of
the form rY( l )51/26A(r )/ l a(r ), with a(r ).0. Using the
distribution of theY stretches, namely,PY( l )522 l , we ob-
tain ther dependence of the critical density

rc
65

1

4
1rX6A~r !(

l
PY~ l !rY~ l !, ~36!

whererX(r !1);r is the density in theX stretches near the
phase transition. Comparing with the phase diagram for
FSM in Fig. 13, the correction termA(r ) seems to be posi
tive for all r . Further, let us suppose that the current in t
FSM is a lower bound to that in the DASEP, as suggested

FIG. 13. Phase coexistence curve for the FSM and the DAS
for f 51/2. The solid parabola is the coexistence curve of the FS
The circles and the triangles are, respectively, the MC and me
field phase-coexistence curves for the DASEP. The dashed para
J5r(12r) demarcates the allowed region for the DASEP.
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Fig. 13. Then the coexistence curve for the random sys
must be quadratic near the critical point (J051/4,r051/2),
being bounded by two quadratics, namely, theJ-r curve for
the pure systemJ5r(12r) and the coexistence curve of th
FSM J51/42(122r)2.

G. Correlations in the steady state

Figure 14 shows the Monte Carlo results for the si
averaged density-density and height-height correlation fu

tions Ḡ(Dr ) and G 2̄(r ) in both the homogeneous an
density-segregated regimes of the DASEP.Ḡ(Dr ) is seen to
decay rapidly over a few lattice spacings, accounting for
success of the mean-field approximation. It is found t

G 2̄(r ) grows asr , implying a roughness exponenta51/2.

IV. DASEP WITH BACKBENDS

As discussed at the beginning of Sec. III, the introduct
of randomness in the easy direction of individual bonds
ters the properties of one-dimensional disordered exclu
process in a crucial way. We study this in this section.

The model is defined as follows. Assign quenched arro
~pointing either right or left! independently to each bond of
periodic chain, with probabilityf , 1

2 for left arrows and 1
2 f for right arrows. An arrow defines the easy direction
hopping on each bond: A particle-hole exchange acros
bond occurs with ratew(11g) if the particle moves along
the direction of the arrow andw(12g) if it moves opposite
to the arrow. Sincef , 1

2 , there is an overall tendency fo
particles to circulate rightward and the question is whet
there is a nonzero current even in the thermodynamic lim

The model represents a system of hard-core particles
random potential with a downward tilt. A conglomeration
left-pointing arrows constitutes a backbend, where the po
tial climbs up before going down again. Within mean-fie
theory it is possible to obtain an upper boundJl on the cur-
rent that can be carried by mutually excluding partic
through a backbend of lengthl @5#. To this end, conside

FIG. 14. Height-height correlation functionG 2̄(r ) for DASEP in
the ~a! homogeneous~circles! and~b! segregated-density~triangles!
regimes. The inset shows the site-averaged density-density cor

tion functionḠ(Dr ) defined in Eq.~15!. The small negative value
at largeuDr u arise due to the finite size of the system.
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biased diffusion of hard-core particles in the segment@0,l # of
a 1D lattice, with the ‘‘optimal’’ boundary conditionsr(0)
51 andr( l )50; these boundary conditions force the large
possible current through the segment, opposite to the b
The master equation that describes transport is invariant
der the interchange of particles and holes and simultane
relabeling of sites in reverse order, i.e.,nj→n̄l 2 j . The
boundary conditions respect this symmetry, implying that
steady-state densityr( j ) at site j satisfiesr( j )512r( l
2 j ). Thus, in the steady state the number of particles in
backbend isl /2 irrespective of the strength of the biasg. The
principal effect of increasingg is to sharpen the region tha
marks the transition from the particle-rich half of the bac
bend to the hole-rich half. The steady-state profile a
proaches a step function centered atj 5 l /2 asg→1.

The current in the steady state is the number of partic
crossing sitel in unit time. Results of a Monte Carlo stud
@5# are consistent with the large-l asymptotic behavior

Jl;expS 2
1

2
l /L~g! D , ~37!

where L(g) is a bias-induced length given byL21(g)
5 ln$(11g)/(12g)%. This can be seen by writing the curre
within a mean-field approximation asJ5W(11g)r j (1
2r j 11)2W(12g)r j 11(12r j ) and finding the value ofJ
for which the boundary conditionsr051 and r l50 hold.
For l @L(g)@1, this leads toJ'2ge2 lg @5#, in agreement
with Eq. ~37! wheng is small.

The origin of the factor12 in the exponent in Eq.~37! has
been discussed in@5# and we recount the argument in brie
The transport of a single particle through the backbend
volves two ~approximately! causally independent steps th
occur in parallel:~i! The topmost particle~located at sitek
' l /2 in large fields! has to be activated a distancel /2, which

requires an activation timet1/2;exp@ 1
2l/L(g)#, and ~ii ! the

consequent hole that remains in the steady-state distribu
moves to the bottom and is filled up, by moving each ofl /2
particles up through a lattice spacing. The time required
t1/2 again. The currentJ is thus proportional tot1/2

21 and
consequently follows Eq.~37!.

Since, for fixed g, the largest current that can flow
through a long backbend@ l @L(g)# is exponentially small in
its length, the largest current through the 1D lattice of len
L is determined by the lengthl * (L) of the largest backbend
encountered. Since the probability of occurrences ofl con-
secutive left-pointing arrows on bonds is proportional tof l ,
we may estimatel * from L f l* 5C, whereC is a constant of
order unity. Substituting in Eq.~37!, we find that the current
falls with increasing lattice size as

J~L !;L2u/2, ~38!

with u2152L(g)lnf. Thus the current is expected to dec
as a power law inL, with a bias-dependent power, and
vanish in the thermodynamic limit. Figure 15 shows the
sult of Monte Carlo simulations.

As with the milder sort of disorder discussed in Sec. I
the state is strongly inhomogeneous and shows macrosc
regions of high and low density. Figure 1~c! shows the time-

la-
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averaged density profile for a typical configuration of bon
There is a large shock around the rate-limiting backbe
which separates the two regions.

For fixed lattice sizeL with an associated longest bac
bend l * (L), the current is a nonmonotonic function ofg.
This can be seen as follows. Ifg is low enough thatL(g)
@ l * (L), linear response theory would imply that currentJ
grows linearly withg. On the other hand, ifg is large enough
thatL(g)! l * (L), the current falls with increasingg accord-
ing to Eq. ~37!. In between,J achieves a local maximum
whenL(g5gmax). l * (L), which impliesgmax;1/ln L.

The argument given above implies that the current car
by a system of hard-core particles through the rando
backbending lattice vanishes in the thermodynamic limit,
matter how small the biasg. This is in contrast to the behav
ior of noninteractingparticles in the same random enviro
ment, where the drift velocity vanishes only if the bias
strong enough@25,6#. The difference can be traced to th
possibility, in the noninteracting case, of compensation b
large buildup of density at the bottom of a backbend, wh
then succeeds in driving a finite current over the backbe
This option does not exist once repulsive hard-core inte
tions come into play and the current vanishes in the ther
dynamic limit.

V. CONTINUUM DESCRIPTION

It is interesting to ask whether the behaviors found ab
in the disordered lattice gases can be reproduced usin
continuum description of the problem. Though we have
pursued this question to its logical end, we discuss in
section some general constraints that a continuum des
tion should satisfy.

The steady state of the disordered system of interac
particles is described by a spatially varying time-averag
density profiler0(r )[^n(r )&. The time evolutions of fluc-
tuations around the mean density profile are governed by
continuity equation

FIG. 15. Size dependence of the steady-state current in the b
bend model~DASEP with some reversed bonds! for two sets of
parameters:~a! g50.33,f 50.25 ~triangles! and ~b! g50.54,f50.3
~circles!. Each point represents an average over~a! 40 realizations
of disorder and~b! 100 realizations of disorder. The straight line
have slopes of2u/2 with u50.5 and 1.0, respectively, as predicte
by Eq. ~38!.
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]t
r~r ,t !1¹W •JW~r,r ,t !50. ~39!

The coarse-grained currentJW may be phenomenologically
divided into three parts

JW~r ,t !5JW sys„r~r ,t !,r …1JWdi f f1eW~r ,t !. ~40!

A local hydrodynamic assumption has been made in writ
the systematicpart of the current,JW sys as a function of the
local density, r(r ,t). The explicit r dependence ofJW sys
comes from the breaking of translational invariance
quenched disorder and its exact form ofJW sys depends on the
microscopic dynamics of the model. Thediffusive current
JWdi f f5D(r )•¹W @r(r ,t)2r0(r )# involves a disordered diffu-
sion tensorD(r ). The noiseeW (r ,t) is to mimic, on a meso-
scopic scale, the stochastic nature of the evolution. It is u
ally assumed to be Gaussian distributed andd correlated in
space and time with vanishing spatial and temporal avera

To obtain the time evolution of the density fluctuatio
r̃[r(r ,t)2r0(r ), we expand JW sys in powers of r̃ as
JW sys„r0(r ),r …1cW (r ) r̃1lW (r ) r̃2

••• and put it in Eq. ~39!.
This results in

] tr̃5¹W •@D~r !•¹W r̃2cW~r !r̃2lW ~r !r̃22•••2eW~r ,t !#.
~41!

In one spatial dimension, the above reduces to~with r
replaced withx) the form

] tr̃5]x@D~x!]xr̃2c~x!r̃2l~x!r̃22•••2h~x,t !#,
~42!

which was considered in@2#. In steady state, the time
averaged current must be independent ofx. As bothJdi f f and
e(x,t) vanish under time averaging, the constraint to be s
isfied is

]x^Jsys~x!&50, ~43!

which is important to account for, as the coefficients inJsys

are explicitly space dependent, i.e.,]x@l(x)^r̃2&1•••# must
vanish.

In their attempt to study a continuum model that describ
the DASEP, Becker and Janssen~BJ! @8# write the currentJ8
in powers of f(x,t)[r(x,t)2r, the density fluctuation
away from theoverall particle densityr in the system. In
one dimension, the form quoted@3# for the DASEP is

J85~122r!f~x,t !2f2~x,t !1h~x!, ~44!

where h(x) is an additive quenched noise term. Since t
time-averaged densityr0(x) varies in space, it is evident tha
f has a nonzero expectation value^f(x,t)&5r0(x)2r. As
we have seen in Sec. III,r0(x), and thuŝ f(x,t)&, can show
strong variations, especially in the density-segregated
gime. Spatial constancy of the average current demands
the time average on the right-hand side of Eq.~44! must
satisfy

]x@~122r!^f~x,t !&2^f2~x,t !&1h~x!#50. ~45!

ck-
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Even when this condition is satisfied, it is not entirely cle
that this continuum theory actually represents the DASEP
one dimension. BJ argue that if]J/]rÞ0, then disorder is
irrelevant on the large scale, a conclusion that is suppo
by @2,26#. However, their conclusion that the conditio
]J/]r50 holds only ifr5 1

2 does not seem to be correct,
least for the DASEP in one dimension; we have seen in S

IV that there is an entire range of densities (1
2 2D<r< 1

2

1D) where]J/]r vanishes, associated with segregation
density on a macroscopic scale.

VI. EQUIVALENT INTERFACE MODELS
IN ONE DIMENSION

In one dimension, both the DASEP~with or without back-
bends! and the GDDP, for which the maximum occupan
per site is 1, are equivalent to stochastic growth models
1D interface moving in a 2D medium. Corresponding to ea
particle-hole configuration$ni% is assigned an interface pro
file $Hi% through Hi5( j < i(122ni) @12#. Pictorially this
means that each particle corresponds to a245° downward
line segment, while a hole corresponds to an upward
~Fig. 16!. Thus clusters of particles and holes translate
645° slope segments and the interface has a mean slope
vanishes when the particle density is 1/2. Away from h
filling, periodic boundary condition for the lattice becomes
helical boundary condition for the interface. Junctions b
tween adjacent particle and hole clusters correspond to
ners in the interface profile.

Evolution of the interface is dictated by the dynamics
the corresponding particle system. The GDDP correspo
to the slicewise motion of segments of a Toom interface
the low noise limit@20#, while the DASEP corresponds to th
corner-flip ‘‘single-step’’ growth model@12# ~Fig. 16!. In
both cases particle movement to the right~or hole move to
left in the GDDP! corresponds to local forward growt
~deposition! of the interface, while a leftward particle mov

FIG. 16. Mapping between driven particle systems ind51 and
growing interfaces.~a! Toom interface dynamics corresponding
the GDDP and~b! single-step model corresponding to the DASE
r
in

d
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f
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h

e
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f

-
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f
ds
n

~e.g., in the DASEP with backbends! corresponds to loca
backward growth~evaporation!. The quenched jump rate
for the particle moves implycolumnar disordered growth
rates for the interface: The normal growth rate of the int
face at a fixedi is the same irrespective of the location of th
interface at successive times. In the long time limit, the me
local forward speed of the interface is the same at all po
along the interface, being proportional to the spatially co
stant steady-state current of the corresponding part
model.

We now discuss the various qualitatively different r
gimes that arise in the interface growth models. Figure
shows time-averaged steady-state interface profiles^Hi& cor-
responding to the three regimes of driven particle syste
illustrated in Fig. 1 in Sec. I. In all three cases we star
from an initially uniform profile, corresponding to a rando
distribution of particles on the lattice.

Figure 17~a! is an interface with a nonzero mean til
which has net forward growth rate at all points. The interfa
has a uniform slope on a macroscopic scale and moves
a finite nonzero speed preserving its mean tilt. This c
corresponds to thehomogeneousregime depicted in Fig.
1~a!. On a microscopic scale the interface has frozen
roughness@Fig. 17~a!, inset# corresponding to the micro
scopic shocks in the steady-state density profile of Fig. 1~a!.

If the mean tilt vanishes, but the interface still has a n
forward growth rate at all points, then the initial uniform
profile att50 coarsens into large segments of different me
slopes at long times@Fig. 17~b!#. These segments have fro
zen roughness on microscopic scales, similar to the non
tilt case@Fig. 17~b!, inset#. The interface moves with a finite
speed preserving its mean shape and mean vanishing
This corresponds to thesegregated-densityregime of Fig.
1~b!.

In addition to the frozen roughness on the microsco
scales, we can define the kinetic roughness as the equal-
mean-square height fluctuations around the steady-state
file. We consider the zero-mean height variableshi(t)
[Hi(t)2^Hi& defined in Eq.~17! and define the roughnes

.

FIG. 17. Interface morphology in the three regimes:~a! uni-
formly moving interface with a uniform slope,~b! interface with
large segments of different slopes moving with a nonvanish
speed, and~c! interface with large segments of different slop
moving with a speed that vanishes in the thermodynamic limit. T
insets show blowups of regions enclosed in the dashed boxes.
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exponenta through ^(hi 1r2hi)
2&;r 2a. As discussed in

Secs. II D, II E, and III F, the roughness exponenta51/2 in
both cases above.

In Fig. 17~c!, which corresponds to thevanishing-current
regime of Fig. 1~c!, the profile resembles that correspondi
to the segregated-density regime in that it has large segm
of different mean slopes. However, in this case the interf
is stationary in the thermodynamic limit, reflecting the va
ishing of the steady-state current in the particle system
interface language, this situation can be visualized as a
of interface growth where there are local stretches of
interface having a net backward growth~evaporation! rate.
Though, on the average, there are more forward-growth
gions than backward-growth ones, in the limit of large s
tem size, arbitrarily long evaporation stretches effectiv
pin the interface.

Turning now to continuum description of the dynamics
these interfaces, at least in the cases where the mean spe
growth is nonzero, the sum in the definition of the heig
variable is replaced by an integral of the coarse-grained
ticle density H(x,t)5*x@122r(x8,t)#dx8. The growth
equation forH(x,t) is governed by~spatially! integrated
one-dimensional version of the continuity equation~39!:
] tH(x,t)5J(]xH,x,t). The fluctuations h(x,t)[H(x,t)
2H0(x) in H around the steady-state profileH0(x)
[^H(x,t)& are governed by

] th5D~x!]xxh2c~x!]xh1
1

2
l~x!]xh

21•••12h~x,t !,

~46!

obtained by integrating Eq.~42!. The absence of any additiv
quenched spatial noise term in Eq.~46! is due to the spatia
constancy of the growth speed of the interface dictated by
same constraint on the steady-state current. In this res
Eq. ~46! differs from the model discussed in@27# where such
a term arises naturally due to the absence of any such
straints. As can be readily verified by power counting,
additive quenched columnar term is highly relevant in
renormalization-group sense and leads to much roughe
terfaces than thea51/2 interfaces described by Eq.~46!.

VII. CONCLUSION

In this paper we have studied the stationary curre
carrying states of driven lattice gas models with quenc
disordered hopping rates. The principal results are of
types: first the exact determination of the steady states f
class of disordered models and second the demarcatio
distinct regimes of behavior on macroscopic length scales
a result of disorder. In this section we briefly review the
results and discuss some related open problems.

The steady states of a family of disordered models,
disordered drop-push process and related models, have
found in all dimensions by an application of the condition
pairwise balance. The result is a product measure state,
site-dependent weights, reflecting the microscopic disor
in the model. The current has been computed as well.
system is characterized by a strictly uniform current den
and a coarse-gained particle density that is approxima
uniform. On a macroscopic scale, the state is homogene
nts
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Disorder can lead to macroscopically nonhomogene
states, as in the 1D disordered asymmetric simple exclu
process. Our numerical and mean-field results show th
macroscopically density-segregated state occurs in
DASEP model with no backbends, for densities in a fin
range around half filling. The origin of density separation
traceable to the existence of a largest current that can
carried by a stretch of weak bonds. This low current can
sustained in the rest of the lattice only by separating
density into distinct large and small values in macrosco
regions of the lattice.

Backbends introduce a third type of possible behavior
one dimension. Like the stretch of weak forward bonds in
density-segregated regime, a backbend rate limits the
rent, leading to density segregation. However, there is
important difference: The longer the stretch of weak forwa
bonds, the closer the current to a finite asymptotic value
contrast, the longer the stretch of reverse-biased bonds
smaller the current: It decreases exponentially fast with ba
bend length. Since the probability of occurrence of a ba
bend decreases exponentially with its length, the result
current that decreases as a bias-dependent power of the
all size of the lattice.

The crucial physical point that underlies the behavior
each of these regimes is the requirement that the steady-
current be constant at all points in the system. Continu
field-theoretical approaches must ensure that this local c
straint is respected; while this is automatically ensured
translationally invariant systems, it may need special car
guarantee in disordered systems.

It would be of interest to generalize our results to high
dimensions and also to include interactions between parti
at different sites. A few scattered results along these lines
available.

~i! For the drop-push class of problems, we have see
Sec. II that the exact steady state even in higher dimens
is characterized by inhomogeneous product measure.
large scales, this leads to a homogeneous state.

~ii ! The transport of particles with hard-core interactio
through the infinite cluster of a randomly diluted lattic
above the percolation concentration has been studied@5,6#.
In a certain regime of dilution, backbends act as local tra
but unlike the one-dimensional case considered in Sec.
there exist infinitely long paths on which the length of eve
backbend is less than a fixed value@28,5,6#. The subnetwork
of such paths is expected to carry a current that then rem
finite in the thermodynamic limit. There is thus n
vanishing-current regime in this system.

~iii ! With attractive interactions between particles, t
driven lattice gas system with nearest-neighbor hopping
known to undergo phase separation below a certain temp
ture @29,3#. A numerical simulation showed that the additio
of a low concentration of blocked sites did not alter the cr
cal behavior of this system@7#.

More systematic studies of higher-dimensional syste
are called for. In particular, it would be interesting to kno
whether disorder-induced large-scale inhomogeneities, a
to the phase separation found in one dimension, persis
higher dimensions as well.



.
s.
or

n
a

ns
re

ad
a
y
ar
on
ri-
a
ta
en

ith
a

ith
er
-

o
io
f

g
at

ns
d
s

-

om

the

an-

r-

e

ds

For

are

PRE 58 1925DRIVEN LATTICE GASES WITH QUENCHED . . .
ACKNOWLEDGMENTS

We thank R. E. Amritkar, D. Dhar, S. Krishnamurthy, R
Lahiri, G. I. Menon, and N. Trivedi for useful discussion
We also thank E. R. Speer for sending us a copy of his w
with S. Goldstein before publication.

APPENDIX: SYMMETRIES OF THE CURRENT
IN THE DASEP

Consider applying the operationsC ~charge conjugation!,
P ~parity transformation!, and T ~time reversal! to the
DASEP. UnderC, particles and holes are interchanged; u
derP, forward and backward hopping rates on each bond
interchanged; underT, the direction of current is reversed.

In this appendix we discuss two types of symmetry tra
formations in the DASEP that leave the steady-state cur
invariant. ~i! The first is invariance underCPT. Under the
simultaneous application of the three operations, the ste
state weights of particle configurations and the current
shown to remain invariant.~ii ! The second type of symmetr
is restricted to 1D systems in which only one-way jumps
allowed on each bond. The symmetry transformation c
sists ofC ~or PT). In this case, we have convincing nume
cal evidence that the current is invariant, though there
pears to be no simple relationship between steady-s
weights of various particle configurations. We have no g
eral proof of this result.

~i! Invariance under CPT. Consider the DASEP, w
quenched disordered and unequal forward and backw
hopping rates on each bond. Below we explicitly deal w
the one-dimensional case, but the results are easily gen
izable to higher dimensions. LetR denote a particular real
ization of disorder andR̄ the realization obtained fromR by
interchanging the forward and backward hopping rates
each bond, which is tantamount to flipping the easy direct
of jumps on all the bonds: IfR is specified by the set o
transition rates$Wi j %, then R̄ corresponds to the set$W̄i j

5Wji %. Also, let us denote byC and C̄ two particle configu-
rations related to each other by particle-hole interchan
Clearly, if C is an allowed configuration of the system
filling r, thenC̄ corresponds to a filling 12r and thus there
is a one-to-one correspondence between the configuratio
the two fillings. Now letC i j be the configuration obtaine
from C by exchanging the occupation numbers at the sitei
and j . It is easy to see that the two transition rates,Wr(C
→C i j ) in realizationR and W̄12r( C̄→Ci j̄ ) in realizationR̄,
are equal~Fig. 18!, i.e., the transition matricesWr andW̄12r

in the two realizations have identical entries.
Identification of the twoW matrices implies that the in

variant measuresPr and P̄12r satisfy

Pr~C!5P̄12r~ C̄!. ~A1!

Using this, together with the identityni(C)512ni( C̄), we
can relaten-point correlations at fillingsr and 12r. In par-
ticular, the site densities at the two fillings are related as

^ni&r,R512^ni&12r,R̄ . ~A2!
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Further, the steady-state currents inR and R̄ at the two fill-
ings are equal, provided we do a time reversal~T! as well:

J0~r,R![Wi j ^ni~12nj !&r,R2Wji ^nj~12ni !&r,R

5W̄ji ^nj~12ni !&12r,R̄2W̄i j ^ni~12nj !&12r,R̄

52J0~12r,R̄!5 J̄0~12r,R̄!. ~A3!

Here J̄0 denotes the time-reversed current and differs fr
J0 by just a sign.

In the case of the FSM~Sec. III E! the realizationsR and
R̄ are identical~apart from a global reflection!. Hence, in this
case the above arguments imply that the magnitudes of
currents at the two fillingsr and 12r are equal. The same
result holds for the single-defect bond case studied by J
owsky and Lebowitz@11#. For the DASEP, with or without
backbends, Eq.~A3! has the corollary that the disorder ave
aged currents at the two fillingsr and 12r are equal.

~ii ! Invariance under C or PT separately~for one dimen-
sion, forward hopping!. Above, we found that the magnitud
of the current is invariant when the filling is changed fromr
to 12r provided the disorder realization is changed fromR

to R̄. Here we observe~based on numerical evidence! that in
one dimension, with only forward hopping, the result hol
for realizationR on its own, i.e.,

J0~r,R!5J0~12r,R! ~C invariance!. ~A4!

In view of Eq. ~A3! this is equivalent to

J0~r,R!5 J̄0~r,R̄! ~PT invariance!. ~A5!

The claim is easily verified for the single-particle~or single-
hole! case using an explicit form for the current:J0

5(( ia i ,i 11
21 )21 @25#. Also, Eq. ~A5! is true atr51/2 since

Eq. ~A4! is an identity at this filling.
We do not have a proof for Eqs.~A4! or ~A5! in the

general case, but they seem to be borne out numerically.
instance, we studied the validity of Eq.~A5! for a system of
size L56 with N52 particles. We tookR to be the set

$Wi ,i 11,i 51, . . . ,6%5$ 1
2 , 1

2 ,1,1,12 ,1%. The invariance of the
current is verified up to 1 part in 108. We also studied the

FIG. 18. Invariance of the current underR→R̄ andr→12r for
the DASEP in one dimension. Jump directions on every bond

reversed fromR to R̄. ConfigurationsC and C̄ are related by

particle-hole interchange. So areC i j andC i j̄ .
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steady-state probabilities of all the6C2 particle configura-
tions for each ofR and R̄, both by a Monte Carlo and by
Lanczos iteration of the stochastic evolution operator. Th
seems to be no straightforward correspondence betwee
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two sets of steady-state weights. This suggests that t
should be a proof of the invariance of the current that d
not rely on identifying the weights of individual configura
tions @30#.
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